FPS ERRATA PAGES (Errata highlighted)

SEC 14 —	Pages 3	through	8

SEC 16 — Pages 1 and 2

SEC 19 — Pages 9 and 10

SEC 20 — Pages 17 and 18

Pages 27 and 28

SEC 21 - Pages 13 and 14

SEC 22 - Pages 29 and 30

SEC 23 — Pages 9 through 12

Pages 33 and 34

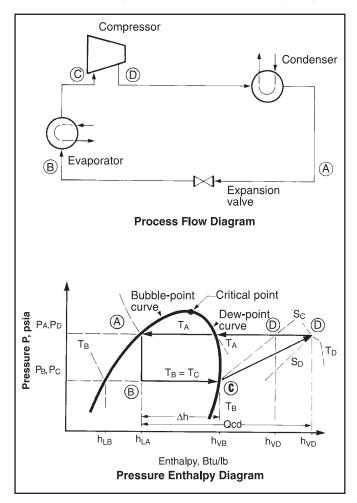
SEC 24 — Pages 1 and 2

SEC 26 — Pages 1 through 34

nation of desuperheating and constant temperature condensing. This fact must be considered for proper design of the condenser.

System pressure drop — Some typical values for pressure drops that must be considered are:

Condenser pressure drop	3.0 to 7.0 psi
Line hydraulic losses	
Evaporator to Compressor* Compressor to Condenser	0.1 to 1.5 psi 1.0 to 2.0 psi
Condenser to Receiver	0.5 to 1.0 psi


^{*} This is an important consideration in refrigeration services with low suction pressure to compressor.

Refrigeration Stages

Refrigeration systems utilizing one, two, three, or four stages of compression have been successfully operated in various services. The number of levels of refrigeration generally depends upon the number of compression stages required, interstage heat loads, economics, and the type of compression.

One-stage system — A typical one-stage refrigeration system is shown in Fig. 14-3 where the data are for pure propane refrigerant. Fig. 14-4 illustrates a process application of a single level chiller and the associated cooling curve.

FIG. 14-2
Process Flow Diagram and Pressure-Enthalpy Diagram

Two-stage system — Savings in the 20% range can often be achieved with a two-stage refrigeration system and interstage flash economizer. Additional savings can be realized by removing process heat at the interstage level rather than at the low stage level. A typical two-stage system with an intermediate load is shown in Fig. 14-5 with data for pure propane.

Three-stage system — Additional horsepower savings can be achieved by using a three-stage compression system. As with a two-stage system, flash economization and/or an intermediate heat load can be used. The savings, while not as dramatic as the two stage versus one-stage, can still be significant enough to justify the additional equipment. A typical three stage propane system is shown in Fig. 14-6.

System configuration — Energy consumption is frequently reduced as the number of stages is increased. For a propane refrigeration system, Fig. 14-7 illustrates the effect of inter-

FIG. 14-3
One-Stage Refrigeration System

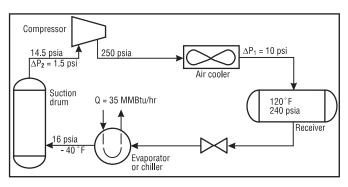
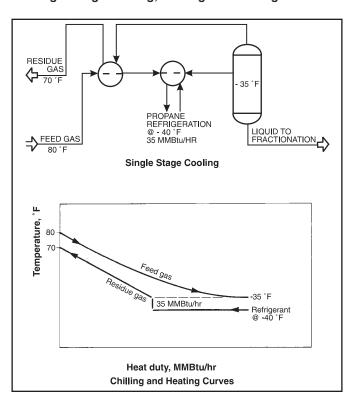



FIG. 14-4
Single-Stage Cooling, Chilling and Heating Curves

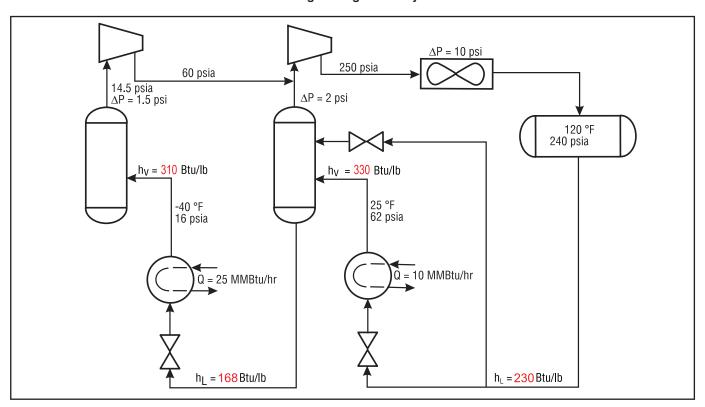
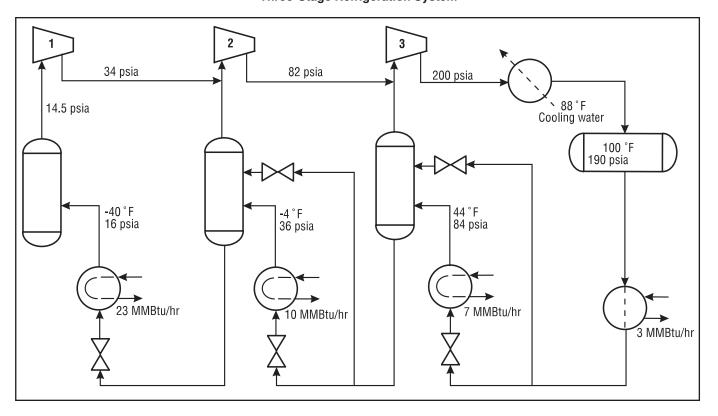



FIG. 14-5
Two-Stage Refrigeration System

FIG. 14-6
Three-Stage Refrigeration System

stages without using refrigeration at intermediate levels. However, the installation cost of such refrigeration systems increases as the number of stages increases. The optimum overall cost will be a function of the specific system and has to be determined for a set of economic criteria.

The compression horsepower for refrigeration can be reduced further by shifting refrigerant load from cooler levels to warmer levels. Fig. 14-8 shows a refrigeration system using two levels of chilling. The gas is initially chilled to 30 °F with 25 °F propane and then to -35 °F with -40 °F propane. The selection of the 25 °F level results from equal compression ratios for each stage. The interstage pressure and corresponding refrigerant temperature may be fixed by either equipment or process conditions. Equal compression ratios per stage are chosen whenever possible to minimize horsepower.

Example 14-1 — Calculate the horsepower and condenser duty required for the process shown in Fig. 14-8 using propane refrigeration. Design condensing temperature is 120 °F. The pressure drop from the chillers to the compressor suction is 1.5 psi. The pressure drop from compressor discharge to the receiver is 10 psi.

Solution Steps:

In order to determine the interstage refrigeration level for a two-stage system, determine the ratio per stage:

$$\mathbf{r} = \left(\frac{\mathbf{P}_{d}}{\mathbf{P}_{c}}\right)^{V_{n}}$$
 Eq 14-9

From the propane vapor pressure curve:

$$P_d = 240 \text{ psia} + 10 \text{ psi} = 250 \text{ psia}$$

$$P_{s} = 16 \text{ psia} - 1.5 \text{ psi} = 14.5 \text{ psia}$$

$$r = \left(\frac{250}{14.5}\right)^{\frac{1}{2}} = 4.15$$

Thus the second stage suction pressure is:

$$P_{s2} = (14.5) (4.15) = 60 \text{ psia}$$

The first stage discharge pressure is:

$$P_{dl} = 60 + 2.0 = 62 \text{ psia}$$

From the vapor pressure curve for propane, the refrigeration temperature at 62 psia is 25 °F. Substituting enthalpy values from Section 24, into Equation 14-5, we find the refrigerant flowrate through each chiller:

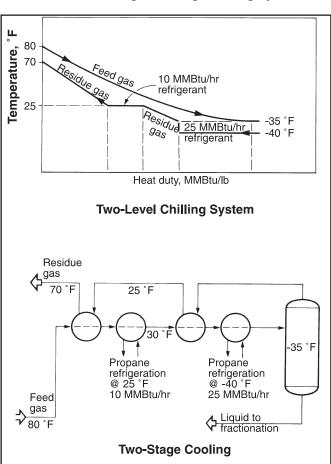
FIG. 14-7
Effect of Staging on a Propane Refrigeration System

		Stages n	
	1	2	3
Refrigeration Duty, MMBtu/hr	1.0	1.0	1.0
Refrigeration Temperature, °F	-40	-40	-40
Refrigerant Condensing Temperature, °F	100	100	100
Compression Requirements, hp	292	236	224
Reduction in hp, %	Base	19.2	23.3
Condenser Duty, MMBtu/hr	1.743	1.600	1.575
Change in condenser duty, %	Base	-8.2	-9.6

$$m_1 = \frac{(25) (10^6)}{(310 - 168)} = 176,056 \text{ lb/hr}$$

$$m_2 = \frac{(10) (10^6)}{(330 - 230)} = 100,000 \text{ lb/hr}$$

where m_1 is the flowrate through the first stage chiller, and m_2 is the flowrate through the second stage chiller.


Liquid flow to the first-stage chiller (176,056 lb/hr) is provided by flashing the liquid refrigerant from the refrigerant receiver at 120 °F and bypassing the second-stage chiller.

In order to determine the flow of liquid refrigerant from the receiver, consider the heat and material balances shown in Fig. 14-9. Here, let m_b (lb/hr) denote the refrigerant bypassing the second-stage chiller. The chiller produces 100,000 lb/hr of refrigerant vapor at 25 °F. These vapors flow through the second stage suction drum, and leave overhead. The liquid required from the second stage flash drum for the first stage chiller comes from the quantity m_b .

By material balance, we find the vapors leaving the second stage suction drum as $m_b + 100,000 - 178,570$ or $m_b - 78,570$ lb/hr. By heat balance around the suction drum, we can determine the amount of refrigerant, m_b :

$$(m_b - 76,056) (330) + (176,056) (168) = m_b (230) + (100,000) (330)$$

 $m_b = 285,191 \text{ lb/hr}$

FIG. 14-8
Two-Level Chilling, Two-Stage Cooling System

In order to calculate isentropic work for the first stage, it is necessary to determine the isentropic enthalpy at 60 psia. Fig. 24-20, the first stage inlet entropy equals $0.925~\text{Btu/(lb} \cdot ^\circ\text{R})$, and the corresponding isentropic enthalpy at 60 psia is 340~Btu/lb.

The ideal change in enthalpy = 340 - 310 = 30 Btu/lb

For propane refrigerant k = 1.13, compression ratio, r, of 4.15 and the isentropic efficiency, η_i of 0.75, the required compression power for the first stage is obtained from Equation 14-7b:

$$GHP_1 = \frac{(30) (178,570)}{(0.75) (2,544.4)} = 2807 \text{ hp}$$

Using Equation 14-7a we determine the first stage discharge enthalpy is:

$$h_{vld} = \frac{30}{0.75} + \frac{310}{0.75} = \frac{350}{0.75}$$
 Btu/lb

A material balance around the second compression stage yields the total refrigerant flow:

$$m_T = m_1 + (m_b - 76,056) = 176,056 + (285,191 - 76,056)$$

= 385,191 lb/hr

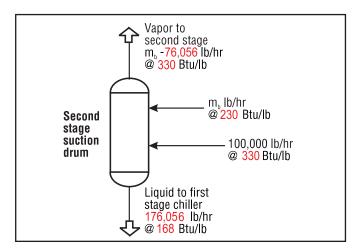
A heat balance at the second compression stage entrance yields the second stage inlet enthalpy:

$$h_{v2s} \; = \; \frac{(350)\; (176,056) + (330)\; (285,191 - 76,056)}{(385,791)}$$

= 339 Btu/lb

From Fig. 24-27, the inlet entropy at 60 psia and 339 Btu/lb is 0.925 Btu/(lb · °R), and the isentropic enthalpy at 250 psia is 367 Btu/lb.

Substituting into Equation 14-6, the ideal enthalpy change across the second stage as:


$$\Delta h = 367 - 339 = 28 \text{ Btu/lb}$$

The required compression power for the second stage is determined from Equation 14-7b:

$$GHP_2 = \frac{(28) (385,712)}{(0.75) (2,544.4)} = 5659 \text{ hp}$$

FIG. 14-9

Data for Heat and Material Balances

Hence, the compression required for the two-stage propane refrigeration system becomes:

$$GHP_T = 2807 + 5659 = 8466 \text{ hp}$$

Using Equation 14-7a, the second stage discharge enthalpy is:

$$H_{V2d} = \frac{28}{0.75} + 339 = 376 \text{ Btu/lb}$$

Substituting into Equation 14-8 yields the condenser duty for the two-stage propane refrigeration system:

$$Q_{cd} = (376 - 230) (385,191) = 56.2 \text{ MMBtu/hr}$$

From Fig. 24-27 the second stage discharge temperature at 250 psia and enthalpy of $376~\rm Btu/lb$ is $165~\rm ^\circ F$.

Condensing Temperature

Condensing temperature has a significant effect on the compression horsepower and condensing duty requirements. Mehra³ illustrated the effect of the condensing temperature on refrigeration requirements for one, two, and three stage systems. Results for a one-stage propylene refrigeration system are summarized in Fig. 14-10.

Fig. 14-10 illustrates that the colder the condensing temperature, the lower the horsepower requirements for a given refrigeration duty. Traditionally, the heat sinks for most refrigeration systems have been either cooling water or ambient air. If cooling water or evaporative condensing is utilized, an 80 to 100 °F temperature can be achieved. For most U.S. Gulf Coast locations, a condensing temperature of 115 to 125 °F is common when using ambient air for cooling. Section 11 provides wet and dry bulb temperature data for other parts of the United States. Fig. 14-10 also indicates, to a certain extent, the effect on operations between summer and winter conditions as well as between day and night operations.

Refrigerant Subcooling

Subcooling liquid refrigerants is common in refrigeration systems. Subcooling the refrigerant reduces the energy requirements. It is carried out when an auxiliary source of cooling is readily available, and the source stream needs to be heated. Subcooling can be accomplished by simply installing a heat exchanger on the appropriate refrigerant and process streams.

FIG. 14-10
Effect of Condensing Temperature

Condensing Temperature, °F	60	80	100	120	140
Refrigeration Duty, MMBtu/hr	1.0	1.0	1.0	1.0	1.0
Refrigeration Temperature, °F	-50	-50	-50	-50	-50
Compression Requirement, hp	211	267	333	429	554
Change in hp, %	-36.6	-19.8	Base	28.8	66.4
Condenser Duty, MMBtu/hr	1.54	1.68	1.84	2.09	2.42
Change in Condenser Duty, %	-16.3	-8.7	Base	13.6	31.5

Example 14-2 — Consider installing a 3 MMBtu/hr subcooler on the liquid propane refrigerant from the receiver at 120 °F in Example 14-1 for the two-stage propane refrigeration system. The second stage of this system is shown in Fig. 14-11.

Solution Steps:

By performing the heat balance around the subcooler and the second stage suction drum, the liquid refrigerant flowrate to the subcooler is determined to be 322,919 lb/hr. When comparing this to the earlier flowrate of 385,191 lb/hr, the refrigerant flow is reduced by 62,272 lb/hr.

By heat balance around the subcooler, we determine the enthalpy of liquid propane refrigerant leaving the subcooler is 221 Btu/lb which corresponds to a temperature of 110 °F.

The flowrate of refrigerant through the second stage chiller becomes

$$m_2 = \frac{(10) (10^6)}{(330 - 221)} = 91,743 \text{ lb/hr}$$

As a result of subcooling, the flow of refrigerant through the second stage chiller has been reduced from 100,000 lb/hr to 91,743 lb/hr. The lower flowrates result in reduced compression horsepower, condenser duty, and reduced size of piping and equipment. These benefits must be balanced against the installed cost of the subcooler exchanger.

Refrigerant For Reboiling

Refrigerants have been successfully used for reboiling services wherever applicable conditions exist. Reboiling is similar in concept to subcooling — heat is taken out of the refrigeration cycle.

In reboiling service, the heat removed from the refrigerant condenses the refrigerant vapor at essentially constant temperature and pressure. The liquid refrigerant produced in a reboiler service is flashed to the next lower pressure stage to produce useful refrigeration. The refrigerant condensing pressure is a function of the reboiling temperature.

Refrigerant Cascading

In the cascading of refrigerants, warmer refrigerants condense cooler ones. Based on the low temperature requirements of a process, a refrigerant that is capable of providing the desired cold temperature is selected. For example, the lowest attainable temperature from ethane refrigerant is -120 °F (for a positive compressor suction pressure), whereas the lowest temperature level for propane is -40 °F (for a similar positive pressure).

In a refrigeration cycle, energy is transferred from lower to higher temperature levels economically by using water or ambient air as the ultimate heat sink. If ethane is used as a refrigerant, the warmest temperature level to condense ethane is its critical temperature of about 90 °F. This temperature requires unusually high compression ratios — making an ethane compressor for such service complicated and uneconomical. Also in order to condense ethane at 90 °F, a heat sink at 85 °F or lower is necessary. This condensing temperature is a difficult cooling water requirement in many locations. Thus a refrigerant such as propane is cascaded with ethane to transfer the energy from the ethane system to cooling water or air.

An example of a cascaded system is shown in Fig. 14-14, where an ethane system cascades into a propane system. The condenser duty for the ethane system is 30.71 MMBtu/hr. This duty becomes a refrigeration load for the propane system along

with its 23 MMBtu/hr refrigeration at -40 °F. Therefore, the propane refrigeration system has to be designed to provide a total of 53.71 MMBtu/hr at -40 °F in addition to 10 MMBtu/hr at -4 °F and 7 MMBtu/hr at 44 °F.

Freon (CFC) Refrigerant Phase Out

Clorinated fluorocarbons (commonly called Freon) have been used for many years as effective refrigerants in many applications. However, the stability of these compounds, coupled with their chlorine content, has linked them to the depletion of the earth's protective ozone layer. As a result, these compounds have been phased out of production and usage globally. Hydrofluorocarbons (HFC) have been developed as an alternative.

Refrigerant HFC-410a has been developed to replace chlorodifluoromethane (R-22). This compound is reasonably close to R-22 in performance. Fig. 14-12 shows a comparison of HFC-410a and R-22. The refrigerant power requirement is quite similar but the operating pressures are higher for HFC-410a.

HFC-134a has been developed to replace dichlorodifluoromethane (R-12). This compound is reasonably close to R-12 in performance but differences in equipment design and operation must be taken into account in the replacement. Fig. 14-13 shows a comparison of HFC-134a and R-12 for an example application. One of the important differences is the higher compression ratio necessary for this refrigerant.

Refrigerant Properties

Physical properties of pure component refrigerants in common use are given in Fig. 14-15. The vapor pressure curves for ethane, ethylene, propane, propylene, and Refrigerant 22 (R-22) are available in Sections 23 and 24 or references 2, 5, 9, and 10. Figs. 14-35 through 14-37 contain properties for HFC-410a. Properties for HFC-134a are given in Figs. 14-38 through 14-40. References 12 and 13 contain additional data for these refrigerants.

Enthalpy data are necessary in designing any refrigeration system. Pressure-enthalpy diagrams for pure ethane, ethylene, propane, propylene, and R-22 are available in Section 24 of this data book or references 2, 5, 9, and 10. References 12 and 13 contain additional information for these refrigerants.

FIG. 14-11
Refrigerant Subcooling

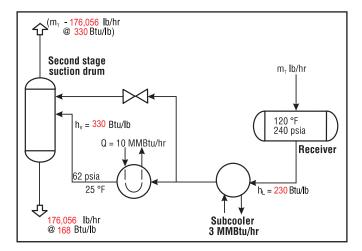


Fig. 14-12
Comparison Example of R-22 and HFC-410*

	R-22	HFC-410a		
Psuction, psia	31.1	51.2		
Pdisch	285	445		
Compr. Ratio	9.19	8.7		
HP/MMBTU/hr	200	201		
Condenser Load MMBTU/MMBTU	1.52 1.51			
*-10 °F Chiller, 120 °F Condensing, 10 psig Condenser DP				

FIG. 14-13 Theoretical Cycle Comparison of R-12 and HFC-134a*

	R-12	HFC-134a
Capacity (as % of R-12)	100	99.7
Compressor Exit temperature °F Exit pressure, psia	188.2 195.6	181.5 213.7
Compression ratio	4.1	4.7

*Conditions: Condenser, 130 °F; Evaporator, 35 °F; Comp. Suction, 80 °F; Expansion Device, 125 °F

Horsepower and Condenser Duty Estimation

Since many gas processing plants require mechanical refrigeration, generalized charts⁵ were developed to aid in a modular approach for designing refrigeration systems.

Because of the complexity of generalizing refrigeration systems, the charts have been developed for four of the most common refrigerants: ethylene, propylene, propane, and Refrigerant 22.

In order to apply these curves to most of the commercially available compressors, a polytropic efficiency of 0.77 was assumed. The polytropic efficiency was converted into an isentropic efficiency 1 to include the effects of compression ratio and specific heat ratio (k = $C_{\rm p}/C_{\rm v}$) for a given refrigerant. For well balanced and efficient operation of the compressor, an equal compression ratio between stages was employed.

The refrigeration level is defined as the temperature of the dew point vapor leaving the evaporator. The pressures at the compressor suction and side load inlet nozzles were adjusted by 1.5 psi to allow for pressure drop. These charts also include a 5 psi pressure drop across the refrigerant condenser for ethylene, and a 10 psi drop for propane, propylene, and Refrigerant 22.

Before developing any system, one must define refrigerant temperature and condensing temperature of the refrigerant based on the medium used for condensing.

To achieve maximum energy conservation and minimum energy cost, it is necessary to match the process conditions and refrigeration compressor design to obtain the best efficiency.

After defining the lowest refrigerant level and the condensing temperature, the pressure at the evaporator and condenser can be established from the vapor-pressure curve for a specific refrigerant. All examples and data in this section are based upon pure component properties. In actual practice, pure hydrocarbon refrigerants are not always available. Impurities may cause significant deviations in design and performance.

One-stage systems — Figs. 14-16 through 14-20 provide data for estimating gas horsepower and condenser duty requirements for one-stage refrigeration systems using ethylene, propane, propylene, R-22, and HFC-410a refrigerants.

Two-stage systems — The data for estimating gas horsepower and refrigerant condenser duty requirements for twostage refrigeration systems utilizing ethylene, propane, propylene, R-22, and HFC-410a are shown in Figs. 14-22 through 14-26.

Three-stage systems — The data for estimating gas horsepower and condenser duty requirements for three-stage refrigeration systems utilizing ethylene, propane, propylene, and R-22 are presented in Figs. 14-27 through 14-31.

Example 14-3 — Estimate the horsepower and condenser duty requirements for a single stage propylene refrigeration system that will provide 25 MMBtu/hr of process chilling at a refrigerant level of $-20 \text{ }^{\circ}\text{F}$.

Solution Steps

The unit GHP for this example from Fig. 14-19 is 222 hp per MMBtu/hr of refrigeration duty at an evaporator temperature of $-20~^\circ\mathrm{F}$ and a condenser temperature of $100~^\circ\mathrm{F}$. And, from Fig. 14-19, the condenser duty factor equals $1.565~\mathrm{MMBtu/hr}$ per MMBtu/hr of refrigeration duty for the same evaporator and condenser temperatures. Hence, the total power and condenser duty are:

$$GHP = (25) (222) = 5,550 \text{ hp}$$

 $Q_{cd} = (25) (1.565) = 39.13 \text{ MMBtu/hr}$

Heat exchanger economizing — An alternative to flash economizing of the refrigeration cycle is to use a heat exchanger to accomplish an economizing step. Fig. 14-21 shows an example economizer using a heat exchanger. The heat exchanger is a chiller which uses some of the condensed refrigerant to subcool the balance of the condensed refrigerant stream. The refrigerant used for the chilling is then fed to the interstage (or second stage) of the refrigeration compressor. The subcooled refrigerant is then used for process chillers. The subcooled refrigerant produces less unusable vapor when flashed to suction drum conditions than a refrigerant stream that is not subcooled. Thus the use of the heat exchanger effectively shifts vapor from the low stage of compression to the high stage, thus saving power. The resultant process impact is very similar to the flash economization previously discussed.

Design and Operating Considerations

The following are some of the important parameters that should be considered while designing any refrigeration system to provide a safe, reliable, and economical operation.

Oil removal — Oil removal requirements from evaporators are related to the type of the refrigerant, lubricant, evaporator, and compressor used in the refrigeration cycle. Fig. 14-32 illustrates the application of an oil reclaimer in a propane refrigerant cycle. In order to remove oil from the refrigerant, a slip

SECTION 16

Hydrocarbon Recovery

Gas processing covers a broad range of operations to prepare natural gas for market. Processes for removal of contaminants such as H_2S , CO_2 and water are covered extensively in other sections of the Data Book. This chapter will cover the processes involved in recovering light hydrocarbon liquids either for sale when their value as liquids is higher than their value as gas components or they must be removed to avoid condensation. The equipment components included in the processes described are covered in other sections of the Data Book. This section will bring those components together in process configurations used for liquid production.

INTRODUCTION

The recovery of light hydrocarbon liquids from natural gas streams can range from simple dew point control to avoid liquid formation to deep ethane extraction. The desired degree of liquid recovery has a profound effect on process selection, complexity, and cost of the processing facility.

The term NGL (natural gas liquids) is a general term which applies to liquids recovered from natural gas and as such refers to ethane and heavier products. The term LPG (liquefied petroleum gas) describes hydrocarbon mixtures in which the main components are propane, iso and normal butane, propylene and butylenes. Typically in natural gas production olefins are not present in LPG.

Typically, modern gas processing facilities produce a single ethane plus product (normally called Y-grade) which is often sent offsite for fractionation and processing. Whether accomplished on-site or at another facility, the mixed product will typically be fractionated to make products such as purity ethane, ethane-propane (EP), commercial propane, isobutane, normal butane, mixed butanes, butane-gasoline (BG), and gasoline (or stabilized condensate). The degree of fractionation and the liquid products is market and geographically dependent.

Early efforts in the 20th century for liquid recovery involved compression and cooling of the gas stream and stabilization of a gasoline product. The lean oil absorption process was developed in the 1920s to increase recovery of gasoline and produce products with increasing quantities of butane. These gasoline products were, and still are, sold on a Reid vapor pressure (RVP) specification. Vapor pressures such as 10 or 12 psia are common specifications for gasoline products. To further increase production of liquids, refrigerated lean oil absorption was developed in the 1950s. By cooling the oil and the gas with refrigeration, the absorber vapor outlet is leaner and propane product can be recovered. With the production of propane from lean oil plants, a market developed for LPG as a portable liquid fuel.

In lieu of using lean oil, refrigeration of the gas can be used for propane and heavier component recovery. The use of straight refrigeration typically results in a much more economical processing facility than using lean oil. The chilling of the gas can be accomplished with mechanical refrigeration, absorption refrigeration, expansion through a J-T valve, or a combination. In order to achieve still lower processing temperatures, cascade

refrigeration, mixed refrigerants, and most significantly turboexpander technologies have been developed and applied. With these technologies, recoveries of liquids can be significantly increased to achieve deep ethane recoveries. Early ethane recovery facilities targeted about 50 % ethane recovery. As processes developed, ethane recovery efficiencies have increased to well over 90% in well integrated facilities.

In some instances heavy hydrocarbons are removed to control the hydrocarbon dew point of the gas and prevent liquid from condensing in pipeline transmission and fuel systems. In this case the liquids are a byproduct of the processing and if no market exists for the liquids, they may be used as fuel. Alternatively, the liquids may be stabilized and marketed as condensate.

GAS COMPOSITION

The gas composition has a major impact on the economics of NGL recovery and the process selection. In general, gas with a greater quantity of liquefiable hydrocarbons produces a greater quantity of products and hence greater revenues for the gas processing facility. Richer gas also entails larger refrigeration duties, larger heat exchange surfaces and higher capital cost for a given recovery efficiency. Leaner gases generally require more severe processing conditions (lower temperatures) to achieve high recovery efficiencies and incur a higher cost per unit of liquid product.

Gases are typically characterized by the gallons per thousand cubic feet of recoverable hydrocarbons in the gas. This is commonly expressed as "GPM." GPM was traditionally meant to apply to propane and heavier components but is often used to include ethane. The GPM of a gas can be calculated as shown in Example 16-1.

The other major consideration in the evaluation of NGL recovery options is the specification of the residue sales gas. Sales specifications are usually concerned with a minimum Higher Heating Value (HHV) of the gas, but in some instances the maximum HHV can also be a consideration. The calculation of HHV is covered in Section 23 and in more detail in GPA Standard 2172, "Calculation of Gross Heating Value, Relative Density, and Compressibility Factor for Natural Gas Mixtures from Compositional Analysis." In addition, for some gas sales the maximum and minimum Wobbe Number of the gas may be specified. For more information on the calculation of Wobbe Number, See Section 1 definitions.

Removal of liquids results in gas "shrinkage" and reduction of the HHV. This shrinkage represents a loss of revenue for the gas sales which must be considered in the economics of an NGL recovery plant. In general, sales gas specifications set the minimum HHV at 950-1000 BTU/scf. Thus, if any components such as nitrogen or CO_2 are present in the gas, sufficient ethane and heavier components must remain in the gas to meet the heating value specification. If little nitrogen or CO_2 is present in the gas, the recovery level of the ethane and heavier components is then limited by markets, cost of recovery, and gas value. The

calculation of HHV and shrinkage cost is illustrated in Example 16-1.

Example 16-1 — Find the GPM of the gas mixture in Fig. 16-1. Find the HHV of the feed gas and the HHV of the residue gas with the following NGL recovery efficiencies: $C_2 - 90\%$, $C_3 - 98\%$, $iC_4/nC_4 - 99\%$, $C_5 + -100\%$. What is the shrinkage cost at \$4/MMBTU?

Solution Steps:

Solution is shown in Fig. 16-1.

From Fig. 23-2 obtain the gal/lb mole for each of the components. Multiply the mole fraction of each component (mol% / 100) by its gal/lb-mol value and divide by 379.49 scf/lb-mol to get gallons per cubic feet of gas. Multiply this value by 1,000 scf/Mscf to get gallons per thousand cubic feet of gas (GPM). The total GPM from Fig. 16-1 is 3.11.

For the recoveries specified the net gal/day and residue composition can be found as shown in Fig. 16-1. In order to compute the HHV of the two streams, the HHVs of each component are found in Fig. 23-2. Multiplying the individual HHVs by the mole % gives a total HHV of 1115.02 for the feed gas and 971.24 for the residue gas.

The shrinkage volume can be found by the difference of the volume of the feed gas times the HHV and the volume of residue gas times its HHV. This volume is then multiplied by \$4/MMB-TU to get the shrinkage value of the NGLs.

Shrinkage Value = \$4/MMBTU • [(330 • 1115.02) – (295.862 • 971.24)] = • \$4/MMBTU • 80606 MMBTUs = \$322,424/day

The value of the NGLs in \$/gal versus the value of the components in the residue gas in \$/gal or the "spread" between these values is the primary economic criteria for NGL recovery project evaluations.

FIG. 16-1 Solution to Example 16-1

GPM CALCULATION							
Commonant	Feed Gas	Gal/Mole	Ava	ilable	Estimated	N-+ C-1/D	Residue Gas
Component	Mole %	Gai/Mole	GPM	Gal/Day	Recovery %	Net Gal/Day	Mole %
N_2	1.000						1.115
CO_2	3.000						3.346
C_1	85.000						94.808
C_2	5.800	10.119	1.55	510363	90	459327	0.647
C_3	3.000	10.424	0.82	271938	98	266499	0.067
IC_4	0.700	12.384	0.23	75383	99	74629	0.008
NC_4	0.800	11.936	0.25	83035	99	82205	0.009
IC_5	0.300	13.855	0.11	36144	100	36144	0.000
NC_5	0.200	13.712	0.07	23848	100	23848	0.000
C ₆ + (Set as NC ₆ for example)	0.200	15.566	0.08	23072	100	26072	0.000
Total	100.000		3.11	1027783		969724	100.000
MMSCFD	330.000						295.862

SHRINKAGE CALCULATION

Component	Feed Gas Mole%	Residue Gas Mole %	HHV BTU/scf	Feed Gas BTU/scf	Residue Gas BTU/scf
N_2	1.000	1.115	0.0	0.00	0.00
CO_2	3.000	3.346	0.0	0.00	0.00
C_1	85.000	94.808	1010.0	858.50	957.56
C_2	5.800	0.647	1769.7	102.64	11.45
C_3	3.000	0.067	2516.2	75.49	1.68
${ m IC}_4$	0.700	0.008	3252.0	22.76	0.25
NC_4	0.800	0.009	3262.4	26.10	0.29
IC_5	0.300	0.000	4000.9	12.00	0.00
NC_5	0.200	0.000	4008.7	8.02	0.00
C ₆ + (Set as NC ₆ for example)	0.200	0.000	4756.0	9.51	0.00
Total	100.000	100.000		1115.02	971.24
MMSCFD	330.000	295.862			

operating characteristics for a representative system. The vapor and liquid rates can vary independently over a broad range and the column will operate satisfactorily. At low vapor rates unsatisfactory tray dynamics may be characterized by vapor pulsation, dumping of liquid, or uneven distribution. At high vapor rates, the tower will eventually flood as liquid is entrained to the tray above or backed-up in the downcomers. At low liquid rates, poor vapor-liquid contact can result. High liquid rates

FIG. 19-9 Flow Through Vapor Passages²⁸

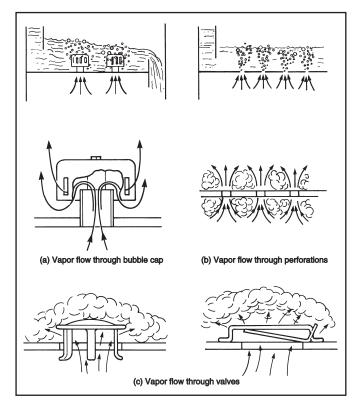
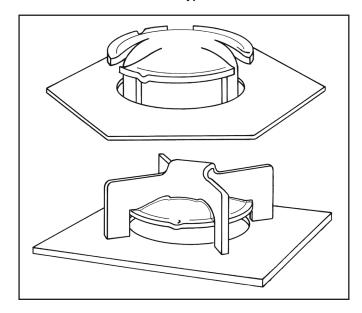



FIG. 19-10 Valve Types²⁸

can cause flooding and dumping as the liquid capacity of the downcomers is exceeded.

In order to handle higher liquid rates, more downcomer area is required. This is often achieved by using multiple pass trays. Multipass trays increase liquid handling capacity for a given diameter due to increased weir length and reductions in the weir crest. Fig. 19-12 shows various configurations beyond a one pass tray where the liquid phase is split into two to four flow paths to increase liquid handling capacity.

Sizing

"C" factor method — Many design methods for sizing trayed fractionators have been used. Generally these methods are oriented toward liquid entrainment limitations or correlations for flooding limits. A simple method called the Souders and Brown equation⁸ involves using a Stokes' Law type formula:

$$v_{max} = C \sqrt{\frac{\rho_L - \rho_v}{\rho_v}}$$
 Eq 19-11

Note that ρ_L and ρ_v are at flowing temperature and pressure.

The value of C can be found from Fig. 19-13 based on tray spacing and liquid surface tension. The column diameter is:

$$D_{T} = \sqrt{\frac{V_{max}}{v_{max} (0.7854)}}$$
 Eq 19-12

This method was originally developed for bubble cap trays and gives a conservative diameter, especially for other types of trays.

Nomograph method — Manufacturers of valve trays have developed design methods for their trays. Design procedures are made available $^{9,\ 10,\ 11}$ for preliminary studies. One such procedure starts with the nomograph in Fig. 19-14. 10 This is a simple relationship of liquid rate (GPM) and a quantity V_{load} defined as:

$$V_{load} = CFS \sqrt{\frac{\rho_v}{(\rho_L - \rho_v)}}$$
 Eq 19-13

FIG. 19-11

Limits of Satisfactory Tray Operation for a Specific Set of Tray Fluid Properties⁸

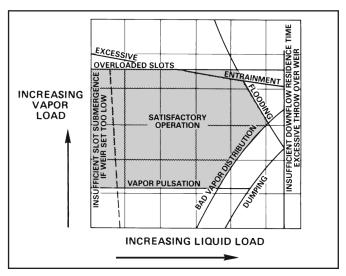
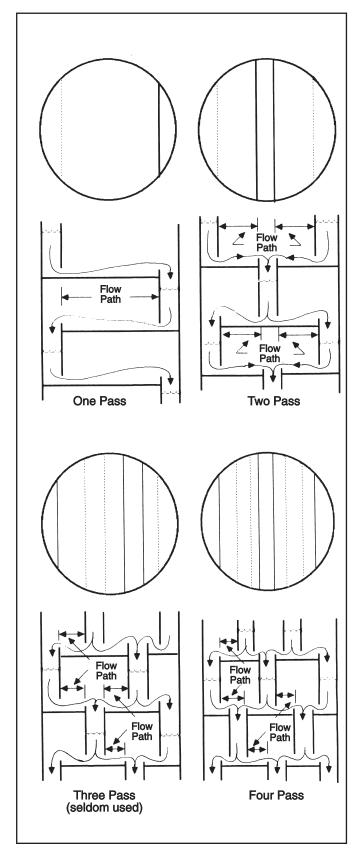
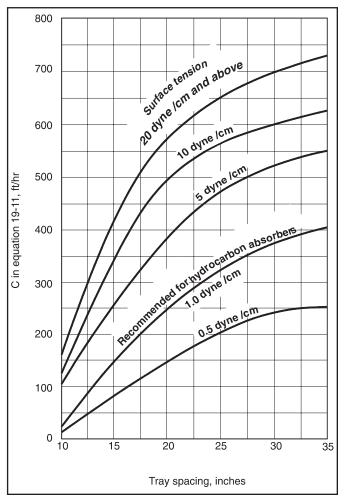



FIG. 19-12
Alternative Liquid Flow Paths

Simplified hand method — Tray vendors today provide computer programs to users to size both trayed and packed columns. These vendors should be contacted for copies of their programs for their products. The method included here is a hand method that can be used for preliminary sizing of trayed columns and to understand the key parameters that affect column sizing.

Fig. 19-14 is an approximation only and does not take into account foaming which is a major consideration in many systems. In order to compensate for foaming, a System Factor is used to adjust the vapor and liquid capacities (Fig. 19-15).

The downcomer velocity $VD_{\rm dsg}^*$ is found from Fig. 19-16. $VD_{\rm dsg}^*$ is corrected by the System Factor:


$$VD_{dsg} = VD_{dsg}^{*}$$
 (System Factor) Eq 19-14

The other factor required for this design method is the vapor capacity factor CAF.

$$CAF = CAF_o$$
 (System Factor) Eq 19-15

 CAF_o is read from Fig. 19-17. In order to compute the column cross sectional area, three quantities are needed.

FIG. 19-13
Souders-Brown Correlation for Approximate Tower Sizing⁸

Solution Steps:

- 1. Enter left side of Fig. 20-25 at 600 psia and proceed to the $\rm H_2S$ concentration line (4.18 mol%)
- 2. Proceed down vertically to the specific gravity of the gas $(\gamma = 0.682)$
- 3. Follow the diagonal guide line to the temperature at the bottom of the graph (T = 63.5 °F)
- 4. Apply the C_3 correction using the insert at the upper left. Enter the left hand side at the H_2S concentration and proceed to the C_3 concentration line (0.67%). Proceed down vertically to the system pressure and read the correction on the left hand scale (–2.7 °F)

Note: The C_3 temperature correction is negative when on the left hand side of the graph and positive on the right hand side.

$$T_H = 63.5 - 2.7 = 60.8 \text{ }^{\circ}F$$

Fig. 20-25 was developed based on calculated hydrate conditions using the Peng-Robinson EOS. It has proven quite accurate when compared to the limited amount of experimental data available. It should only be extrapolated beyond the experimental data base with caution.

Fig. 20-26³⁴ presents experimental hydrate formation data for three mixtures of methane, propane and hydrogen sulfide. Results of selected hydrate prediction methods are also shown.

The addition of CO_2 to pure methane will slightly increase the hydrate temperature at a fixed pressure. ³⁵ However, the addition of CO_2 to a "typical" sweet natural gas mixture will often lower the hydrate formation temperature at a fixed pressure. Fig. 20-27 is provided to portray these compositional effects. The hydrate curves for four gas compositions are shown. These were generated using a commercial hydrate program employing the Peng-Robinson EOS. The four gas compositions are:

Sweet Gas (0.6 sp. gr. gas from Fig. 20-16) Sweet Gas containing 10% CO₂ Sour Gas containing 10% H₂S Sour Gas containing 10% CO₂ and 10% H₂S

Note that H₂S significantly increases the hydrate tempera-

ture of a sweet natural gas. In this example, at 1000 psia, the addition of $\rm H_2S$ (10 mol%) to a sweet gas mixture increases the hydrate temperature by 15 °F. On the other hand, $\rm CO_2$ has a minor effect on the hydrate formation temperature and slightly decreases the hydrate temperature for both the "sweet" and "sour" gases in this case.

EOS-based computer programs are probably the most consistent method of predicting hydrate formation temperatures today. Accuracy when compared to experimental data is usually $\pm\,2$ °F. This is generally adequate for design.

Hydrate Inhibition

The formation of hydrates can be prevented by:

- Maintaining the system temperature above the hydrate formation temperature by the use of a heater and/or insulation
- 2. Dehydrating the hydrocarbon fluid (gas and/or liquid) to eliminate the condensation of liquid or solid water
- 3. Injection of a chemical inhibitor to prevent or mitigate hydrate formation

In some cases, heating or dehydration may not be practical or economically feasible. In these cases, chemical inhibition can be an effective method of preventing hydrate formation. Chemical inhibition utilizes injection of thermodynamic inhibitors (sometimes called equilibrium inhibitors) or low dosage hydrate inhibitors (LDHIs). Thermodynamic inhibitors are the traditional inhibitors (i.e., one of the glycols or methanol), which lower the temperature of hydrate formation. LDHIs are either kinetic hydrate inhibitors (KHIs) or antiagglomerants (AAs). They do not lower the temperature of hydrate formation, but do diminish its effect. KHIs lower the rate of hydrate formation, which inhibits its development for a defined duration. AAs allow the formation of hydrate crystals but restrict them to sub-millimeter size.

Thermodynamic inhibitors — Inhibition utilizes injection of one of the glycols or methanol into a process stream where it can combine with the condensed aqueous phase to lower the hydrate formation temperature at a given pressure. Both

FIG. 20-26 Experimental vs. Predicted Hydrate Conditions for Gases Containing C_1 , C_3 , and H_2S

	Composition, mol %			Experimental Data ¹⁸		Predic	ted Temperat	ure, °F
\mathbf{C}_1	\mathbf{C}_3	$ m H_2S$	γ	Temperature, °F	Pressure, psia	Fig. 20- <mark>13</mark>	Eq 20-3	Fig. 20-25
88.654	7.172	4.174	0.649	40.3	102.4	NA	36.6	41.8
88.654	7.172	4.174	0.649	51.8	205.8	41	47.2	52.3
88.654	7.172	4.174	0.649	57.6	293.5	45	52.2	57.3
88.654	7.172	4.174	0.649	64.4	488.3	53	58.9	65.2
81.009	7.016	11.975	0.696	50.7	118.5	34	41.2	51.4
81.009	7.016	11.975	0.696	67.1	408	53	58.9	70.7
60.888	7.402	31.71	0.823	55.6	99.5	37	44.7	55.8
60.888	7.402	31.71	0.823	66.4	209.5	47	59.6	68.5
60.888	7.402	31.71	0.823	75.7	371	55	67.5	76.6
60.888	7.402	31.71	0.823	82.0	620	62	75.3	83.6

glycol and methanol can be recovered with the aqueous phase, regenerated and reinjected. For continuous injection in services down to $-40\,^{\circ}\mathrm{F}$, one of the glycols usually offers an economic advantage versus methanol recovered by distillation. At cryogenic conditions (below $-40\,^{\circ}\mathrm{F}$) methanol usually is preferred because glycol's viscosity makes effective separation difficult.

Ethylene glycol (EG), diethylene glycol (DEG), and triethylene glycol (TEG) have been used for hydrate inhibition. The most popular has been ethylene glycol because of its lower cost, lower viscosity, and lower solubility in liquid hydrocarbons.

Physical properties of methanol and methanol-water mixtures are given in Fig. 20-28 through Fig. 20-31. Physical properties of the most common glycols and glycol-water mixtures are given in Fig. 20-32 through Fig. 20-49. Tabular information for the pure glycols and methanol is provided in Fig. 20-50.

Equilibrium inhibitors are used in both pipeline/flowline applications as well as in low temperature gas processing facilities. To be effective, the inhibitor must be present at the very point where the wet gas is cooled to its hydrate temperature.

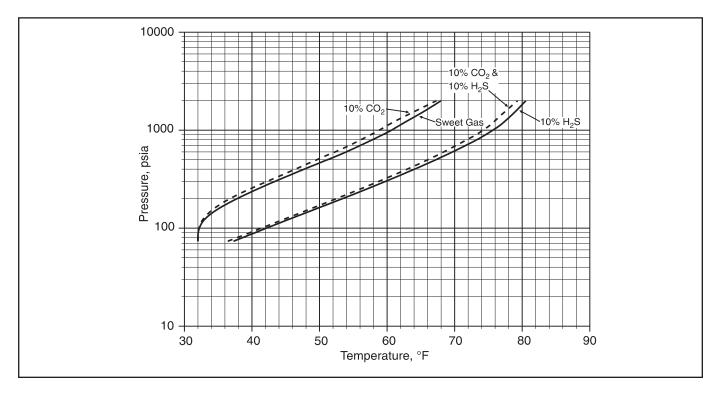
Fig. 20-51 shows a flow diagram for a typical EG injection system in a refrigeration plant. In these facilities, the glycol inhibitor is sprayed into the gas upstream of the exchanger. The exchanger type can be shell and tube, plate or printed circuit. As water condenses, the inhibitor is present to mix with the water and prevent hydrates. Injection must be in a manner to allow good distribution in the gas flow path. It is common practice to inject 2 to 3 times the glycol rate calculated from the correlations that follow.

The viscosity of ethylene glycol and its aqueous solutions increases significantly as temperature decreases. This effect must be considered in the design and rating of exchangers in low temperature gas processing facilities.

The inhibitor and condensed water mixture is separated from the gas stream along with a separate liquid hydrocarbon stream. At this point, the water dew point of the gas stream is essentially equal to or slightly lower than the separation temperature. Glycol-water solutions and liquid hydrocarbons can emulsify when agitated or when expanded from a high pressure to a lower pressure, e.g., JT expansion valve. Careful separator design normally allows nearly complete recovery of the diluted glycol for regeneration and reinjection.

The regenerator in a glycol injection system should be operated to produce a regenerated glycol solution that will have a freezing point below the minimum temperature encountered in the system. This is typically 75–80 wt%. Fig. 20-52 shows the freezing point of various concentrations of glycol water solutions

The minimum inhibitor concentration in the free water phase may be approximated by Hammerschmidt's equation.³⁶


$$d = \frac{K_H X_I}{MW_I (1 - X_I)}$$
 Eq 20-4

$$X_{\rm I} = \frac{dMW_{\rm I}}{K_{\rm H} + dMW_{\rm I}}$$
 Eq 20-5

where K_H for ethylene glycol and methanol = 2335.

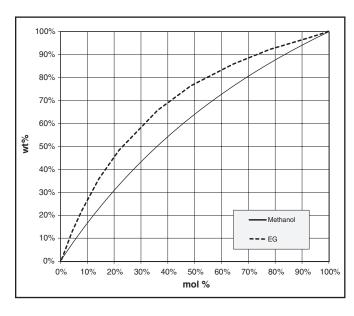
Earlier editions of the Engineering Data Book suggested a range of $K_{\rm H}$ values (2335–4000) for glycols. Higher values of $K_{\rm H}$ result in lower concentrations of rich (diluted) glycol ($X_{\rm I}$ in Equation 20-5) which, in turn, suggests a lower inhibitor injection rate. Experimental data suggests $K_{\rm H}$ = 2335 is the correct constant as illustrated in Fig. 20-53. In some field operations,

FIG. 20-27 Hydrate Formation Conditions for Sweet Gas Showing Effects of CO_2 and H_2S

Solution Steps:

Methanol

1. Calculate the amount of water condensed per day from Fig. 20-4, $W_{\rm in} = 53.0~{\rm lb}\,/{\rm MMscf}$


 $W_{\text{out}} = \frac{9.5 \text{ lb / MMscf}}{40.5 \text{ lb / MMscf}}$

 $\Delta W = 43.5 \text{ lb} / \text{MMscf}$

Water condensed = (100)(43.5) = 4350 lb/day

 Calculate required methanol inhibitor concentration from Equation 20-5 and 20-6

FIG. 20-54
Weight % vs. Mol% for Methanol and EG Solutions

$$d = 25 \text{ °F}, MW = 32$$

Solving for X_I,

From Equation 20-5, $X_I = 0.255$,

From Equation 20-6, mol fr. = 0.175 (use this value in subsequent calculations)

From Fig. 20-54, wt% = 27.5

3. Calculate mass rate of inhibitor in water phase from Equation 20-9 (assume 100% methanol is injected)

$$m_{\rm I} = -\frac{X_{\rm R} \cdot m_{\rm H_2O}}{X_{\rm L} - X_{\rm R}} = \frac{(0.275)(4350)}{(1 - 0.275)} = -1650 \; {\rm lb/day}$$

4. Estimate vaporization losses from Fig. 20-55.

@ 40 °F and 900 psia, losses = 1.9 (lb MeOH/MMscf)/ mol% MeOH in water phase

daily losses = (1.9)(100)(17.5) = 3325 lb/day

5. Estimate losses to hydrocarbon liquid phase from Fig. 20-56.

@ 40 °F and paraffinic fluid, Dist. Ratio = 110 mol % MeOH in hyd. liquid = 17.5/110 = 0.16 mol%

1 Bbl of condensate has a mass of (350 lb/bbl)(0.78) = 273 lb

= (273/140) = 1.95 lb-mol/Bbl

= (1.95)(0.0016) = 0.003 lb mol MeOH

= (32)(0.003) = 0.1 lb per Bbl

Total MeOH losses to the hydrocarbon liquid phase = (0.1)(100)(10) = 100 lb MeOH/day

Total methanol injection rate = 1650 + 3325 + 100= 5075 lb/day

FIG. 20-55
Ratio of Methanol Vapor Concentration to Methanol Liquid Concentration

Methanol left in the gas phase can be recovered by condensation with the remaining water in a downstream chilling process. Likewise, the methanol in the condensate phase can be recovered by downstream water washing.

80 wt% EG

Calculate required inhibitor concentration from Equation 20-5

$$d = 25 \text{ °F}, MW = 62, K_H = 2335$$

Solving for X_I , $X_I = 0.40$

2. Calculate mass rate of inhibitor solution in water phase from Equation 20-9

$$m_{I} = \frac{(0.40)(4350)}{(0.80 - 0.40)}$$
$$= 4350 \text{ lb/day}$$

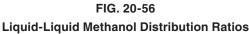
Vaporization and liquid hydrocarbon losses are negligible.

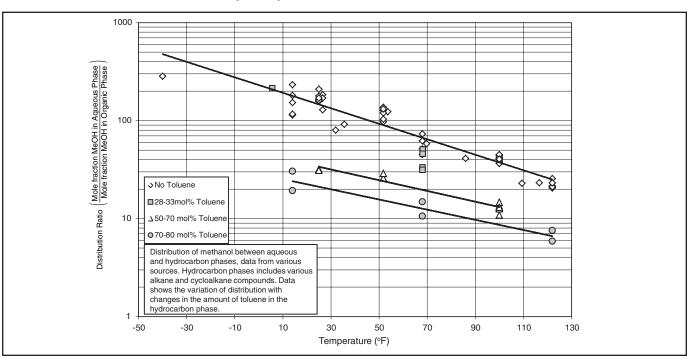
Hydrate inhibition with methanol or EG is widely used in pipelines as well as in gas processing plants. The choice of inhibitor is influenced by several factors. A few of these are listed below:

Methanol Advantages

- Generally less expensive than EG
- · Requires lower concentrations in the aqueous phase
- · Can inhibit to very low temperatures
- · Has a lower viscosity than EG

- During regeneration, contaminants in the water phase (such as dissolved solids) leave with the water, not the methanol
- Can be transported in the vapor phase (significant methanol vaporization at injection point) which is useful for removing hydrates that have formed downstream of the injection point in the system


Methanol Disadvantages


- Higher inhibitor losses to the hydrocarbon vapor and liquid phases
- More difficult to recover methanol from the aqueous phase
- · More toxic than EG
- More flammable than EG (lower flash point)

Methanol losses to the hydrocarbon vapor and liquid phases has become a more significant issue due to increasingly stringent contaminant specifications for condensate, NGLs and natural gas.

EG Advantages

- Very low solubility losses to the hydrocarbon phases and generally not regarded as a contaminant
- Much easier to recover from the water phase (regeneration)
- · Less toxic and less flammable than methanol
- Can also provide corrosion inhibition for "top of the line corrosion" in pipelines

- The required treating circulation rate is lower. This is a direct function of higher amine concentration.
- Reduced reboiler steam consumption.

Typical concentrations of $DGA^{\$}$ range from 50% to 60% $DGA^{\$}$ by weight while in some cases as high as 70 wt% has been used. $DGA^{\$}$ has an advantage for plants operating in cold climates where freezing of the solution could occur. The freezing point for 50% $DGA^{\$}$ solution is -30 °F. Because of the high amine degradation rate $DGA^{\$}$ systems require reclaiming to remove the degradation product. $DGA^{\$}$ reacts with both CO_2 and COS to form N, N', bis (hydroxyethoxyethyl) urea, generally referred to as BHEEU. 16 $DGA^{\$}$ is recovered by reversing the BHEEU reaction in the reclaimer.

Methyldiethanolamine —Methyldiethanolamine (MDEA) is a tertiary amine which can be used to selectively remove H₂S to pipeline specifications at moderate to high pressure. If increased concentration of CO₂ in the residue gas does cause a problem with contract specifications or downstream processing, further treatment will be required. The H₂S/CO₂ ratio in the acid gas can be 10–15 times as great as the H₂S/CO₂ ratio in the sour gas. Some of the benefits of selective removal of H₂S include:

- Reduced solution flow rates resulting from a reduction in the amount of acid gas removed
- Smaller amine regeneration unit
- Higher H₂S concentrations in the acid gas resulting in reduced problems in sulfur recovery

 ${\rm CO_2}$ hydrolyzes much slower than ${\rm H_2S}$. This makes possible significant selectivity of tertiary amines for ${\rm H_2S}$. This fact is used by several companies who provide process designs using MDEA for selective removal of ${\rm H_2S}$ from gases containing both ${\rm H_2S}$ and ${\rm CO_2}$.

A feature of MDEA is that it can be partially regenerated in a simple flash. As a consequence the removal of bulk H_2S and CO_2 may be achieved with a modest heat input for regeneraion. However as MDEA solutions react only slowly with CO_2 (see chemistry) activators must be added to the MDEA solution to enhance CO_2 absorption. If this is done, then the solvent is referred to as promoted or activated MDEA.

Triethanolamine — Triethanolamine (TEA) is a tertiary amine and has exhibited selectivity for H₂S over CO₂ at low pressures. TEA was the first amine commercially used for gas sweetening. It was replaced by MEA and DEA because of its inability to remove H₂S and CO₂ to low outlet specifications. TEA has potential for the bulk removal of CO₂ from gas streams. It has been used in many ammonia plants for CO₂ removal.

Diisopropanolamine — Diisopropanolamine (DIPA) is a secondary amine which exhibits, though not as great as tertiary amines, selectivity for H₂S. This selectivity is attributed to the steric hindrance of the chemical. (See later discussion on this topic.)

Formulated solvents and mixed amines — Formulated Solvents is the name given to a new family of amine-based solvents. Their popularity is primarily due to equipment size reduction, reduced corrosion and energy savings over most of the other amines.

All the advantages of MDEA are valid for the Formulated Solvents, usually to a greater degree. Some formulations are capable at high pressure of slipping larger portions of inlet $\rm CO_2$ than generic MDEA to the outlet gas and at the same time removing $\rm H_2S$ to less than 4 ppmv. Under conditions of low absorber pressure and high $\rm CO_2/H_2S$ ratios, such as Claus tail gas clean-up units, certain solvent formulations can slip up to 90% of the incoming $\rm CO_2$ to the incinerator.

At the other extreme, certain formulations remove CO_2 to a level not possible with MDEA, so that the sweet gas is suitable for cryogenic plant feed. Formulations are also available for CO_2 removal in ammonia plants. Finally, there are solvent formulations, which remove H_2S to 4 ppmv pipeline specifications, while reducing high inlet CO_2 concentrations to 2% for delivery to a pipeline. Typical treating applications for the gas processing industry, and the common treatment strategies employed using formulated amines, are summarized in Fig. 21-12. Several general approaches are commonly used in the solvent formulations.

To achieve very low CO₂ concentrations in the treated gas, the formulation may contain activators, such as piperazine or primary/secondary amines to promote CO₂ removal.

In order to enhance H_2S removal, and thereby allow greater CO_2 slip, stripping agents, such as inorganic acids may be used.

This need for a wide performance spectrum has led Formulated Solvent suppliers to develop a large stable of different MDEA-based solvent formulations or MDEA-based solvents. In summary, benefits claimed by suppliers are:

For New Plants

- reduced corrosion
- reduced circulation rate
- lower energy requirements
- · smaller equipment due to reduced circulation rates

$For\ Existing\ Plants$

- increase in capacity, i.e., gas through-put or higher inlet acid gas composition
- reduced corrosion
- lower energy requirements and reduced circulation rates

Formulated solvents are proprietary to the specific supplier offering the product. Companies offering these products and/or processes include INEOS, Huntsman Corporation, Dow Chemical Company, UOP, BASF, Shell Global Solutions and Total via Prosernat.

FIG. 21-12
Common Formulated Amines Applications

Treating Strategy	Gas Treating Specification/Application
Deep H ₂ S and CO ₂ removal	Outlet H_2S (4 PPM) & CO_2 (down to <50 ppmv)/Treating high pressure sour gas w/ H_2S for downstream cryogenic processing
Deep CO ₂ removal w/some CO ₂ slip	Outlet H_2S (4 ppmv) & CO_2 (0.5 to 2 mol%)/ Treating high pressure sour gas w/ H_2S to pipeline specifications
Deep CO ₂ Removal	Outlet CO ₂ down to <50 ppmv/Treating high pressure gas w/CO ₂ upstream of cryogenic processing
${ m CO_2}$ removal with slip	Outlet CO_2 (2 mol%)/Treating high pressure gas w/ CO_2 to pipeline specifications
Deep CO ₂ removal with bypass	Outlet CO_2 (100-1000 ppmv)/Treating high pressure gas to produce pipeline quality gas (2 mol% CO_2) using feed gas bypass
$\begin{array}{c} \text{Deep H_2S removal}\\ \text{with high CO_2 slip} \end{array}$	Outlet H_2S (10 ppmv to 250 ppmv) w/high CO_2 slip/Sulfur plant tail gas treating applications
Deep H ₂ S removal with high CO ₂ slip	Outlet H_2S (50 ppmv to 250 ppmv) w/high CO_2 slip/Acid gas enrichment for Claus sulfur plant feed

Sterically hindered amines — Other amines have been used to treat sour gas. 17 One specialty amine uses steric hindrance (see nomenclature) to slow the rate of CO_2 absorption. This type of amine and the associated technology is different than Formulated Solvents, which create the desired formulations by blending different components with a standard amine such as MDEA. These sterically hindered amines are very selective for the removal of H_2S in the presence of CO_2 . For low pressure applications such as AGE and TGCU, the CO_2 slip can be as high as 95%. An example of this technology is FLEXSORB®SE/SE Plus solvents, marketed by ExxonMobil Research and Engineering Company. 18,19

Acid Gas Enrichment

Normally, Acid Gas Removal units (AGRs) remove essentially all of the $\rm H_2S$ and $\rm CO_2$ from the produced natural gas. As discussed previously, AGRs can utilize a variety of solvents, including generic and formulated MDEA. In some cases, controlled $\rm CO_2$ removal can be used using a selective solvent such as FLEXSORB®SE or an MDEA based solvent to leave some of the $\rm CO_2$ in the sales gas. However, for gas fields with high $\rm CO_2$ to $\rm H_2S$ ratios, the acid gas stream from the AGR regenerator will have an unfavorably high $\rm CO_2$ to $\rm H_2S$ ratio resulting in a poor quality feed to a Claus plant.

In the last few decades, Acid Gas Enrichment (AGE) has been used much more frequently to increase the $\rm H_2S$ content in high $\rm CO_2$ containing acid gas streams. As the name implies, acid gas enrichment concentrates the $\rm H_2S$ from the AGR system by further gas treatment in a second amine unit utilizing a selective amine solvent. Except for the use of the selective amine solvent, an AGE unit is similar to other traditional amine treating units. Fig. 21-13 shows a simplified flow diagram of an acid gas enrichment unit. The AGR acid gas is fed to the base of an absorber column equipped with either trays or packing where the $\rm H_2S$ is

absorbed via counter-current contacting with the descending amine solvent. The AGE absorber typically operates at low pressure (~0.5 barg, 7 psig), compatible with the operating pressure of the upstream AGR regenerator overhead system, but generally somewhat higher to provide the required inlet pressure to the SRU, so that the main AGR doesn't need to provide the extra pressure drop. The selective amine in the AGE preferentially absorbs the $\rm H_2S$ and allows the $\rm CO_2$ to remain in the treated gas (also known as " $\rm CO_2$ slip"). The rich amine from the bottom of the absorber is then pumped through a rich-lean heat exchanger and on to a regenerator tower. The regenerator produces an enriched acid gas product overhead and the lean amine bottoms product to be recycled to the absorber.

To achieve the twin goals of low H_2S in the treated gas and low CO_2 in the enriched acid gas, the AGE amine solvent must maximize the selectivity for absorbing H_2S . Unfortunately, the CO_2 and H_2S partial pressure driving forces in the AGE absorber work against achieving these goals simultaneously. As the gas moves up the absorber tower, the H_2S partial pressure is decreasing reducing the mass transfer driving force. At the same time, the CO_2 partial pressure is increasing, making CO_2 pick-up more difficult to avoid, so the concentration factor achieved in each acid gas enrichment step is limited.

Simplified design calculations — A simplified procedure for making rough estimates of the principal parameters for conventional MEA, DEA, DGA®, and MDEA amine treating facilities when both $\rm H_2S$ and $\rm CO_2$ are present in the gas is given below. It is based on excerpts from Jones and Pearce, 21 modified and extended by the Section 21 Subcommittee 22 in 2002. The procedure involves estimating the amine circulation rate and using it as the principal variable in estimating other parameters. For estimating amine circulation rate, the following equations are suggested:

For MEA:

$$GPM = 41 \cdot (Qy/x)$$
 Eq 21-6

0.33 mol acid gas pick-up per mole MEA assumed) For DEA (conventional):

$$GPM = 45 \cdot (Qy/x)$$
 Eq 21-7

(0.5 mol acid gas pick-up per mole DEA assumed) For DEA (high loading):

$$GPM = 32 \cdot (Qy/x)$$
 Eq 21-8

(0.7 mol acid gas pick-up per mole DEA assumed) For $\mathrm{DGA}^{\$}$

$$GPM = 55.8 \cdot (Qy/x)$$
 Eq 21-9

(0.39 mol acid gas pick-up per mole DGA assumed) For activated MDEA (assuming 9:1 ratio of MDEA to DEA)

GPM =
$$51.7 \cdot (Qy/x)$$
 Eq 21-9a

(0.50 mol acid gas pick-up per mole mixture assumed)

Where:

Q = Sour gas to be processed, MMscfd

y = Acid gas concentration in sour gas, mole%

x = Amine concentration in liquid solution, wt% (Use

Fig. 21-4 to ensure amine concentration does not exceed maximum recommended concentration)

After the amine circulation has been estimated, heat and heat exchange requirements can be estimated from the infor-

Heat in, Btu/hr:

Feed Gas		=	$311\ 540$
Combustion Air		=	$795\ 540$
H ₂ S Combustion	(97.02 mols/hr) (222 700)	=	$21\;606\;354$
HC Combustion	(4.71 mols/hr) (345 100)	=	$1\;625\;421$
Claus Reaction	(130/2 mols/hr) (-20 230)	=	$-1\ 367\ 136$
			$22\ 971\ 719$

The flame temperature is approximately 2127 °F.

Step 2 Waste Heat Boiler Duty

Assume that 250 psig steam is generated in the waste heat boiler and therefore that the temperature of the cooled combustion products is 700 °F. From Fig. 22-21 (ignoring S_7), the distribution of sulfur vapor species at 700 °F is approximately 0.5 mol % S_2 , 45 mol % S_6 , and 54.5 mol % S_8 . The cooled combustion product composition and waste heat boiler heat balance are therefore as follows:

Reaction Products H @ 2127 °F

	mols/hr	Btu/lb-mol	Btu/hr
$\mathrm{H_2S}$	58.88	21 793	1 283 172
CO_2	159.10	$25\ 308$	$4\ 026\ 544$
$\mathrm{H_{2}O}$	293.26	19 759	$5\ 794\ 640$
SO_2	29.44	$25\ 979$	$764\ 834$
N_2	582.65	$15\ 875$	$9\ 249\ 674$
S_2	101.37	$25\ 623$	2597347
S_6	_	_	_
S_8	_	_	_
	1224.70		23 716 211

Cooled Reaction Products H @ 700 °F

			_
	mols/hr	Btu/lb-mol	Btu/hr
$\mathrm{H_2S}$	58.88	5 796	339 654
CO_2	159.10	6873	$1\ 093\ 494$
$\rm H_2O$	293.26	5 659	$1\ 659\ 446$
SO_2	29.44	$7\ 324$	$215\ 624$
N_2	582.65	4 716	$2\ 748\ 051$
S_2	0.14	5 509	790
S_6	12.90	$19\ 534$	$252\ 065$
S_8	15.63	$27\ 073$	423 114
	1152.01		6 732 237

From Fig. 22-29

 S_2 (vapor) $\rightarrow S_6$ (vapor) (12.90) (122 500) = 1 580 761 Btu/hr From Fig. 22-29

 S_2 (vapor) $\rightarrow S_8$ (vapor) (15.63) (177 900) = 2 780 290 Btu/hr

Total heat duty

Note: Partial pressure of sulfur vapor

$$= \frac{S_2 + S_6 + S_8}{Total Mols}$$
 (Total Pressure)

=
$$\frac{0.14 + 12.90 + 15.63}{1152.01}$$
 (1.3) = 0.032 atmospheres

From Fig. 22-22, the vapor pressure of sulfur at 700 $^{\circ}$ F is approximately 0.3 atmosphere, so no sulfur is condensed.

Step 3 1st Sulfur Condenser

Assume a pressure drop through the condenser of 0.5 psi, with the process stream further cooled to 350 °F. From Fig. 22-22, the vapor pressure of sulfur at 350 °F is 0.0011 atmospheres so the stream is below the sulfur dewpoint. The distribution of sulfur species is 14.5 mol % S_6 and 85.5 mol % S_8 . If no condensation took place, there would be 3.84 mols/hr of S_6 and 22.62 mols/hr of S_8 . [Note: (6)(3.82) + (8)(22.48) \cong (2)(101.37)]

Uncondensed sulfur

$$= \left[\frac{(0.0011) \; (14.7)}{18.6 - (0.0011) \; (14.7)}\right] [1152.01 - (\; 3.82 + 22.48)]$$

= 0.98 mols/hr

 S_6 : 0.145 (0.98) = 0.14 mols/hr uncondensed 3.82 - 0.14 = 3.68 mols/hr condensed

 S_8 : 0.853 (0.98) = 0.84 mols/hr uncondensed 22.48 - 0.84 = 21.64 mols/hr condensed

Condenser Outlet Conditions H @ 350 °F

mols/hr Btu/lb-mol Btu/hr H_2S 58.88 2611 153 716 CO_2 159.10 3044 484 300 H₂O 293.26 2650 777 110 SO_{2} 29.44 3270 96 256 2223 N_2 582.65 1 295 445 S₂ (vapor) S₆ (vapor) 3.84 8966 34 431 S₈ (vapor) 22.62 12 385 280 140 1149.79 3 121 398

DH: 6 732 237 - 3 121 398 = 3 610 839 Btu/hr

Fig. 22-30 DH:

 $S_6 \ (vapor) \rightarrow S_{liq} \ (3.70) \ (178.8 \ { \cdot \ } 6 \ { \cdot \ } 32.04) = 127 \ 178 \ Btu/hr$ Fig. 22-30 DH:

 $S_8 \ (vapor) \rightarrow S_{liq} \ (21.78) \ (123.6 \ { \cdot } \ 8 \ { \cdot } \ 32.04) = 690 \ 015 \ Btu/hr$ Fig. 22-29 DH:

 $S_2 \text{ (vapor)} \rightarrow S_6 \text{ (vapor)} (0.005) (122 500) = 613 \text{ Btu/hr}$

Fig. 22-29 DH:

 S_2 (vapor) $\rightarrow S_8$ (vapor) (0.031) (177 900) = 5515 Btu/hr

Total Duty

3610839 + 127178 + 690015 + 613 + 5515

= 4 434 160 Btu/hr

Step 4 1st Reheater

One of the principal purposes of reheating is to maintain the process gas above the sulfur dewpoint throughout the catalyst bed. To estimate the dewpoint temperature at the bed outlet, assume that 20% of the $\rm H_2S$ in the feed will be converted to sulfur in the first catalyst bed. Total sulfur (as $\rm S_1$) at the bed outlet will then be

0.14 (6) + 0.84 (8) + 0.20 (291.06) = 65.77 mols/hr vapor as S_1 assuming a pressure drop for the reheater and catalyst bed of 1.0 psi,

Sulfur vapor pressure (as S_1) then is:

$$\frac{65.77}{1129.35}$$
 (17.6) = 1.03 psi or 0.07 atmospheres

From Fig. 22-22, the vapor pressure of sulfur at 445 °F is about 0.070 atm. The preheater outlet temperature is therefore set 30 °F higher or 475 °F.

	H @ 4	$\mathrm{H} @ 475\ \mathrm{^\circ F}$		H @ 350 °F		
	mols/hr	Btu/lb-mol	Btu/hr	Btu/hr		
$\mathrm{H_2S}$	58.88	5 103	218 052	153 716		
CO_2	159.10	$4\ 355$	$692\ 920$	$484\ 300$		
$\mathrm{H_{2}O}$	293.26	3714	$1\ 089\ 038$	$777\ 110$		
SO_2	29.44	$4\ 664$	$137\ 323$	$96\ 256$		
N_2	582.65	3 108	1810906	$1\; 295\; 445$		
S_6	0.26	$12\ 661$	$3\ 292$	2331		
S_8	0.75	$17\ 508$	13 131	$9\ 288$		
	1124.34		3 964 662	2 818 447		

Reheater Heat Duty = 3964662 - 2818447

= 1 146 215 Btu/hr

NOTE: At 475 °F, the molecular distribution of sulfur vapor species (Fig. 22-21) is $0.255~S_6$ and $0.745~S_8$.

Step 5 1st Catalytic Converter

In the temperature range of 400–700 °F prevailing in the catalytic reactors, the Claus reaction equilibrium involving formation of S_2 , S_6 , and S_8 should all be used in equilibrium calculations. However, a good approximation is obtained (usually within 1% total overall conversion) if only the reaction to form S_8 is considered.

Assume y mols of H_2S react.

	$\underline{\text{Feed Gas} \ @ \ 475 \ ^{\circ}\text{F}}$	Outlet Conditions
	mols/hr	mols/hr
H_2S	58.88	58.88 - y
CO_2	159.10	159.10
H_2O ,	293.26	293.26 + y
SO_2	29.44	29.44 - y/2
N_2	582.65	582.65
S_{6}	0.26	_
S_8	0.75	$0.95 + (^{3}/_{16})y$
	1124.34	1124.34 - 0.3125y

at equilibrium

$$\begin{split} K_p &= \frac{[H_2O]^2 \left[S_8\right]^{\frac{3}{8}}}{[H_2S]^2 \left[SO_2\right]} \left[\frac{\pi}{total\ mols}\right]^{\frac{3}{8}}^{-1} \\ &= \frac{[293.26 + y]^2 \left[0.95 + \frac{3}{16} y\right]^{\frac{3}{8}}}{[58.88 - y]^2 \left[29.44 - y/2\right]} \left[\frac{[1.2]}{[1124.34 - 0.3125y]}\right]^{-\frac{5}{8}} \end{split}$$

converging moles converted to balance enthalpy in and out:

y, mols/hr (assumed)	K_{p} (calculated)	Equilibrium Temperature
38.48	4081	582 °F

As an alternative to reading Fig. 22-27 the following approximation can be used:

Equilibrium temperature (°F) = 1143 -90.19 · ln (Kp) + 3.108 · ln (Kp)^2 -0.04539 · ln (Kp)^3

For the assumed value of y, calculate the total outlet stream enthalpy (using the data in Fig. 22-28 or the approximations provided earlier) and the overall converter heat balance. For example, for y = 38.48 mols/hr

	Outlet Stream	H @	582 °F
	mols/hr	Btu/lb-mol	Btu/hr
H_2S	20.40	4 669	95 239
CO_2	159.10	$5\ 526$	$879\ 227$
$\mathrm{H_{2}O}$	331.74	$4\ 633$	$1\ 536\ 899$
SO_2	10.20	5 904	$60\ 221$
N_2	582.65	3 870	$2\ 254\ 676$
S_6	0.26	15 890	4 131
S_8	8.17	$21\ 998$	$179\ 617$
	1112.51		5 010 011

Heat Balance

NOTE: At 582 °F, the molecular distribution of sulfur species is $0.35~\rm S_6$ and $0.65~\rm S_8$ but we were examining only $\rm S_8$ formation here. The heat in plus heat of reaction equals the heat out, validating the convergence.

FIG. 23-2 (Cont'd)

References for the Table of Physical Constants

- Coursey, J. S. and Dragoset, R. A. (2001). Atomic Weights and Isotopic Compositions (version 2.2.1), [Online]. Available: http://physics.nist.gov/Comp [2002, February 13]. National Institute of Standards and Technology, Gaithersburg, MD. Originally published as R.D. Vocke, Jr., Atomic Weights of the Elements 1997, Pure Appl. Chem., 71(8), 1593 (1999)
- X. Yan, Q. Dong, X. Hong, and M. Frenkel, NIST/TRC Table Database, NIST Standard Reference Database 85, Version 2002. NIST Standard Reference Data Program, Gaithersburg, MD.
- 3. E. W. Lemmon and M. O. McLinden, Reference Fluid and Thermodynamic and Transport Properties (REF-PROP), NIST Standard Reference Database 23, Version 7, Beta Version, February 5, 2002. NIST Standard Reference Data Program, Gaithersburg, MD.
- Ambrose, D.; Hall, D. J.; Lee, D. A.; Lewis, G. B. J. Chem. Thermodyn., 1978, 11, 1089.
- A.H. Harvey, A.P. Peskin, and S.A. Klein, NIST/ASME Steam Properties, NIST Standard Reference Database 10, Version 2.2, NIST Standard Reference Data Program, Gaithersburg, MD (2000);

and

W. Wagner and A. Pruss, "The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use," J. Phys. Chem. Ref. Data, in press (2002).

- Henderson, C.; Lewis, D. G.; Prichard, P. C.; Staveley, L. A. K.; Fonseca, I. M. A.; Lobo, L. Q. J. Chem. Thermodyn. 1986, 18, 1077.
- 7. Francis, A. W. J. Chem. Eng. Data, 1960, 5, 534.
- 8. Wilhoit, R. C.; Marsh, K. N.; Hong, X.; Gadalla, N.; Frenkel, M.; "Thermodynamic Properties of Organic Compounds and their Mixtures; Densities of Aliphatic Hydrocarbons: Alkanes," Group IV, Volume 8, Subvolume B: Landolt-Börnstein, 1996.
- 9. Dymond, J. H.; Marsh, K. N.; Wilhoit, R. C.; Wong, K. C.; "The Virial Coefficients of Pure Gases and Mixtures; Virial Coefficients of Pure Gases," Group IV, Volume 21, Subvolume A: Landolt-Börnstein, 2002. In Press.
- Frenkel, M.; Kabo, G. J.; Marsh, K. N.; Roganov, G. N.; Wilhoit, R. C.; "Thermodynamics of Organic Compounds in the Gas State, Vol. I & II," TRC Data Series, 1994.
- Zabransky, M.; Ruzicka, V.; Majer, V.; Domalski, E. S.; "Heat Capacity of Liquids," J. Phys. Chem. Ref. Data, Monograph 6, ACS/AIP, 1996.
- 12. Engineering Sciences Data Unit, "Fire Hazard Properties: Flash Points, Flammability Limits and Autoignition Temperatures," ESDU 82030, September 1983.
- 13. Obert, Edward F.; "Internal Combustion Engines and Air Pollution," Harper & Row: NewYork, 1973.

Physical properties for compounds of interest to the natural gas industry in custody transfer appear in GPA Standard 2145, "Table of Physical Properties for Hyrdocarbons and Other Compounds of Interest to the Natural Gas Industry."

Fig. 23-2 contains several fictitious entries: the vapor pressures of methane, ethane and ethene at 100 °F, the refractive indicies of methane and ethane at 60 °F, and the liquid densities of methane at 60 °F (their use in calculating a few other

properties propagate through the figure). The reason they are fictitious is that 60 or 100 °F is above the critical temperatures of these compounds and the liquid state does not exist at 14.696 psia under such conditions. In no instance is it necessary to use these entries from a technical perspective, but they have worked their ways into contractual agreements. Rather than cause opening of contracts, the GPSA includes these unphysical values in the figure, but users should not rely upon calcula-

Liquid Volume Fraction Calculation

Component	x	MW	$\mathbf{x} \cdot \mathbf{MW}$	M	lbm	lbm/gal	gal	v
Carbon Dioxide	0.0011	44.010	0.0484	0.0011	914	6.8199	134	0.0007
Methane	0.0214	16.043	0.3433	0.0079	6,480	2.5	2,592	0.0127
Ethane	0.3897	30.070	11.7183	0.2680	221,192	2.9696	74,485	0.3643
Propane	0.3648	44.097	16.0866	0.3679	303,647	4.2268	71,839	0.3514
Iso-butane	0.0294	58.123	1.7088	0.0391	32,255	4.6927	6,873	0.0336
Normal-butane	0.0877	58.123	5.0974	0.1166	96,217	4.8691	19,761	0.0967
Iso-pentane	0.0171	72.150	1.2338	0.0282	23,288	5.2058	4,474	0.0219
Normal-pentane	0.0182	72.150	1.3131	0.0300	24,786	5.2614	4,711	0.0230
Hexanes +	0.0706	87.436	6.1730	0.1412	116,520	5.5910	19,580	0.0958
TOTAL	1.0000		43.7227	1.0000	825,300		204,449	1.0000

tions using these values outside of contractual agreements and defined specifications. An example would be calculation of the liquid volume fractions for the components of a liquid mixture. The table above comes from GPA Standard 8173:

The liquid volume fraction for methane is fictitious, but experience has shown that using this calculation procedure provides a reliable specification for the maximum liquid volume fraction for methane.

COMPUTER PREDICTION METHODS

Computer methods that predict physical and thermodynamic properties for light hydrocarbons and natural gas constituents are widely available. People involved in the design and operation of natural gas processing facilities use them routinely. This section emphasizes hand calculation methods that provide reliable estimates for thermophysical properties. These methods provide quick, order-of-magnitude checks to evaluate more detailed procedures or when a computer is not available.

Some computer results appear in this section. Using equations of state to predict properties is convenient and easy, but such methods do not apply equally well for all properties. Accurate and reliable values result for gas phase densities, volumes and Z-factors, while liquid volumes and densities are less accurate but still as reliable as predictions using hand-calculation methods. Equations of state are not suitable to predict thermal conductivities, viscosities and surface tensions. Computer programs cited in this section are representative of those widely available for prediction of physical and thermodynamic properties. Any references to commercial products in this section do not constitute GPA and/or GPSA endorsement of the program(s). An accurate, reliable equation of state is always the most convenient method for obtaining engineering accuracy gas phase properties. Unfortunately, widespread availability and ease of use are not suitable criteria for choosing an equation of state program.

Z-FACTOR FOR GASES

Pure Gases

The ideal gas equation of state is a convenient and often satisfactory tool when dealing with gases at pressures that do not exceed one atmosphere. The errors associated with this equation are about 2-3% in this pressure range. However, the errors can escalate to hundreds of per cent at higher pressures.

Section 25 presents many equations of state that represent the pressure-volume-temperature relationships for gases. Use of these equations for engineering calculations is complicated and requires a computer or a programmable calculator to complete the calculations in a reasonable amount of time. A generalized, corresponding states plot of Z-factors is reasonably convenient and sufficiently accurate for some engineering requirements. The Z-factor provides the ratio of the real gas volume to that of the ideal gas.

$$PV = ZnRT = ZmRT/MW$$
 Eq 23-1

The Z-factor is a dimensionless parameter, independent of the quantity of gas, determined by the characteristics of the gas, the temperature, and the pressure. Knowing Z, calculation of PVT relationships are as easy at high pressure as at low pressure.

The equation used to calculate ideal gas density is:

$$\rho = \frac{(MW) \cdot P}{RZT}$$
 Eq 23-2

The value for R is 10.73 when pressure is psia, volume is cubic feet, quantity of gas is pound moles, and temperature is °R. Values of R for other combinations of units appear in Section 1.

The theorem of corresponding states that fluids that have the same value of reduced temperature and reduced pressure have the same reduced volume. The reduced property is the property divided by the value of the property at the critical point. Thus, according to the theorem, different fluids that have the same reduced temperature and reduced pressure have the same Z-factor.

Reduced Temperature,
$$T_r = T/T_c$$
 Eq 23-3
Reduced Pressure, $P_r = P/P_c$ Eq 23-4

For gas mixtures, the reduced conditions can be estimated using pseudo-critical values instead of the true critical values:

pseudo-reduced Temperature,
$$T_r = T/\sum (y_i T_{ci}) = T/T_{pc}$$

i Eq 23-3a

pseudo-reduced Temperature,
$$T_r = T/\sum (y_i T_{ci}) = T/T_{pc}$$
 i Eq 23-3a pseudo-reduced Pressure, $P_r = P/\sum (y_i P_{ci}) = P/P_{pc}$ i Eq 23-4a

Any units of temperature or pressure are acceptable provided that the same absolute units are used for T as for $T_c\left(T_{pc}\right)$ and for P as for $P_c(P_{pc})$. The "average molecular weight" for a gas mixture is

$$MW_{avg} = \sum_{i} y_{i}MW_{i}$$
 Eq 23-5

Fig. 23-3 illustrates calculation of pseudo-critical properties and MW_{avg} for a typical natural gas. Estimation techniques to calculate the critical temperature and pressure for hexanes and heavier or heptanes and heavier fractions using molecular weight and specific gravity or average boiling point and relative density appear in this section.

Attempts to prepare a generalized plot suitable for application to the low molecular weight hydrocarbons, including methane, ethane, and propane, indicate that an error frequently in excess of 2 to 3% is unavoidable because of deviations from the theorem of corresponding states. Fig. 23-4, prepared using pure component and gas mixture data, can estimate Z (2–3% error) for pure hydrocarbon gases. Use reduced temperature and pressure instead of pseudo-reduced values for pure components. At low pressures, the different compounds more nearly conform to corresponding states. The Z-factor is approximately 1.0 at pressures below 1 atmosphere. Errors generally are 2-3% for pressures ≤300 psia if the gas is 50 °F or more above its saturation temperature at the pressure of concern.

It is possible to determine gas volumes, densities and Z-factors for pure hydrocarbon and non-hydrocarbon vapors using P-H diagrams like those in Section 24, Thermodynamic Properties. Interpolation between specific volume curves on a P-H diagram does not yield results of high accuracy. An equation of state provides more accurate pure component PVT properties, particularly if that equation has been fit to volumetric data for the specific component. Tabulations of properties obtained in this way appear in the literature. 12

Example 23-1 — Pure component properties

Using Fig. 24-20, the P-H diagram for propane, calculate the density of propane vapor at 200 °F and 100 psia.

Solution Steps

On the P-H diagram at the intersection of the T = 200 °F, P = 100 psia lines read v = 1.5 ft³/lbm. Then: ρ = 1/1.5 = 0.667 lbm ft⁻³

Using the EZ*THERMO⁹⁰ version of the SRK⁹¹ equation of state, ρ is 0.662 lb/ft³, from which v = (1/0.662) = 1.51 ft³/lbm.

For propane at 200 °F and 100 psia using data from Fig. 24-27.

$$Z = \frac{MW \cdot P}{RT\rho} = \frac{(44.10)(100)}{(10.73)(458.67 + 200)(0.667)} = 0.936$$

The SRK calculation gives $\rho = 0.662$ lb/ft³, and Z = 0.941.

Gas Mixtures

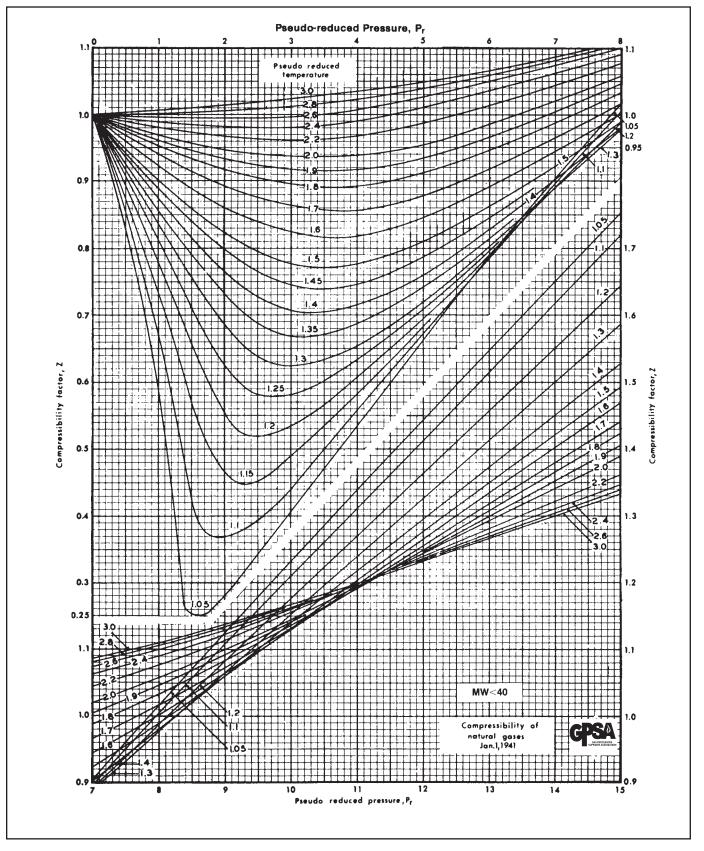
GPA Standard 2172, "Calculation of Gross Heating Value, Relative Density and Compressibility Factor for Natural Gas Mixtures from Compositional Analysis" contains additional information regarding the calculation of Z-factors for mixtures at pressures below 150 psia.

Minor amounts of non-hydrocarbons — Fig 23-4¹ shows Z-factors for typical sweet natural gases. Using Z-factors from Fig. 23-4 should yield mixture volumes (densities) within 2% to 3% of the true values for reduced temperatures from slightly greater than 1.0 to the limits of the chart for both temperature and pressure. The chart has been prepared from data for binary mixtures of methane with ethane, propane and butane and data for natural gas mixtures. All mixtures have average molecular weights less than 40, and all gases contain less than 10% nitrogen and less than 2% combined hydrogen sulfide and carbon dioxide. Fig. 23-4 applies for temperatures 20 °F or more above saturation up to pressures of 10,000 psia.

Appreciable amount of non-hydrocarbons — Fig. 23-4 does not apply for gases or vapors with more than 2% H₂S and/ or CO₂ or more than 20% nitrogen. Use other methods for vapors that have compositions atypical of natural gases mixtures or for mixtures containing significant amounts of water and/or acid gases, and for all mixtures as saturated fluids.

Fig. 23-4 provides reasonably accurate gas Z-factors for natural gases with high nitrogen content, up to 50% (or even higher) when using the molar average pseudo-criticals from Eqs 23-3a and 23-4a. The same approach applies to gas condensate fluids containing appreciable amounts of heptanes and heavier components. Critical temperatures and pressures for heptane and heavier fractions can be estimated from molecular weight and relative density, or average boiling point and relative density, using correlations presented in this section.

Figs. 23-5, 23-6 and 23-7 provide Z-factors for low molecular weight natural gases. These figures cover a wide range of molecular weights (15.95 to 26.10), temperatures (–100 to 1000 °F) and pressures (up to 5,000 psia). For gases with molecular weights between those shown in Figs. 23-5 through 23-7, linear interpolation between adjacent charts is sufficient to compute the Z-factors.


In general, Z-factors for gases with less than 5% noncondensable non-hydrocarbons, such as nitrogen, carbon dioxide, and hydrogen sulfide, result with less than 5% error. When the molecular weight is above 20 and the Z-factor is below 0.6, errors as large as 10% may occur.

Effect of acid gas content — Natural gases containing H_2S and/or CO_2 exhibit different Z-factor behavior than do sweet gases. Wichert and $Aziz^3$ present a calculation procedure to account for these differences. Their method uses the standard gas Z-factor chart (Fig. 23-4) and provides sour gas Z-factors that contain as much as 85% total acid gas. Wichert and Aziz define a "critical temperature adjustment factor," ϵ , that is a function of the concentrations of CO_2 and H_2S in the sour gas. This correction factor adjusts the pseudo-critical temperature and pressure of the sour gas according to the equations:

FIG. 23-3
Calculation of Pseudo-critical Temperature and Pressure for a Natural Gas Mixture

Component	Mole Fraction, y _i	Component Critical Temperature, T _{ci} , °R	$\begin{array}{c} Pseudocritical \\ Temperature, \\ T_{pc}, {}^{\circ}R \end{array}$	Component Critical Pressure, P _{ci} , psia	Pseudocritical Pressure, P _{pc} , psia	Component Molecular Weight, MW	Mixture Molecular Weight, y _i • MW
$\mathrm{CH_4}$	0.8319	343.0	285.3	666.4	554.4	16.043	13.346
C_2H_6	0.0848	549.6	46.6	706.5	59.9	30.070	2.550
C_3H_8	0.0437	665.7	29.1	616.0	26.9	44.097	1.927
$\mathrm{iC_4H_{10}}$	0.0076	734.1	5.58	527.9	4.01	58.123	0.442
$\mathrm{nC_4H_{10}}$	0.0168	765.3	12.86	550.6	9.25	58.123	0.976
iC_5H_{12}	0.0057	828.8	4.72	490.4	2.80	72.150	0.411
$\mathrm{nC_5H_{12}}$	0.0032	845.5	2.71	488.6	1.56	72.150	0.231
$\mathrm{nC_6H_{14}}$	0.0063	913.3	5.75	436.9	2.75	86.177	0.543
			$T_{pc} = 392.62$		$P_{pc} = 661.57$		$MW_{m} = 20.426$
				G = 20.426/28.9625 = 0.705			

FIG. 23-4 Compressibility Factors for Natural Gas¹¹

The same constants apply at 100 °F and at 210 °F.

 $n = 0.02645 \cdot e^{[1.8(1105.7)/559.67]} = 0.926 \text{ cs at } 100 \text{ }^{\circ}\text{F}$

 $\eta = 0.02645 \cdot e^{[1.8(1105.7)/669.67]} = 0.517 \text{ cs at } 210 \text{ }^{\circ}\text{F}$

The reported experimental values are 0.93 and 0.52 centistokes, respectively.

Viscosity of Pure CO₂ and CO₂/ H₂S Mixtures

Gaseous CO_2 viscosity, away from the critical region, is accurately predicted by conventional methods. Reference 57 reports on extensive experimental measurements of liquid CO_2 viscosity. The authors discuss earlier attempts to represent the excess viscosity by two equations, joined by a blending function, and on their development of a single equation to cover the whole of the thermodynamic surface.

Reference 105 (2008) discusses experimental and modeling work on mixtures of $\mathrm{CO_2}$ and $\mathrm{H_2S}$ in detail and lists 50 references with several (related to modeling) as recent as 2006. However, the latest experimental work listed in this review was dated 1970.

A current (2011) GPA Research Project, Project No 042, is to measure physical properties (heat capacity, density, thermal conductivity, viscosity) in high pressure acid gas streams. $\rm H_2S$ contents will range from 20–80 mol%, temperatures from 50–350 °F, and pressures 500–5000 psia.

THERMAL CONDUCTIVITY

Thermal conductivity for natural gas mixtures at elevated pressure can be calculated from an atmospheric value and a pressure correction. Figs. 23-31 through 23-36 present low pressure thermal conductivity data for gases developed from published data. The pressure correction of Lenoir et al. Shown in Fig. 23-32 applies to these low pressure data. The thermal conductivity of liquid paraffin hydrocarbons appears in Fig. 23-35 and the thermal conductivity of liquid petroleum fractions appears in Fig. 23-36.

Example 23-11 — Find the thermal conductivity of a natural gas at 700 psia and 300 °F with properties MW = 25, T_c = 440 °R and P_c = 660 psia.

Solution Steps

From Fig. 23-31, at 300 °F:

 $k_A = 0.0248 \ Btu/[(hr \cdot ft^2 \cdot {}^{\circ}F)/ft]$

 $T_r = (300 + 459.67)/440 = 1.73$

 $P_r = 700/660 = 1.06$

From Fig. 23-32:

 $k/k_A = 1.15$

 $k = (1.15) (0.0248) = 0.0285 \text{ Btu/[(hr \cdot ft^2 \cdot ^\circ\text{F)/ft]}]}$

FIG. 23-22
Viscosity of Paraffin Hydrocarbon Gases at One Atmosphere

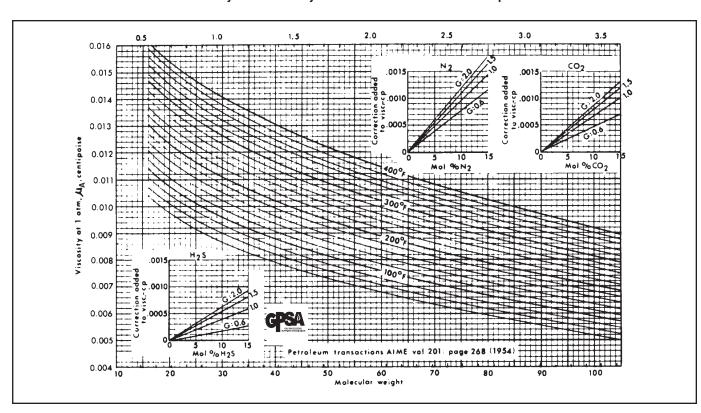
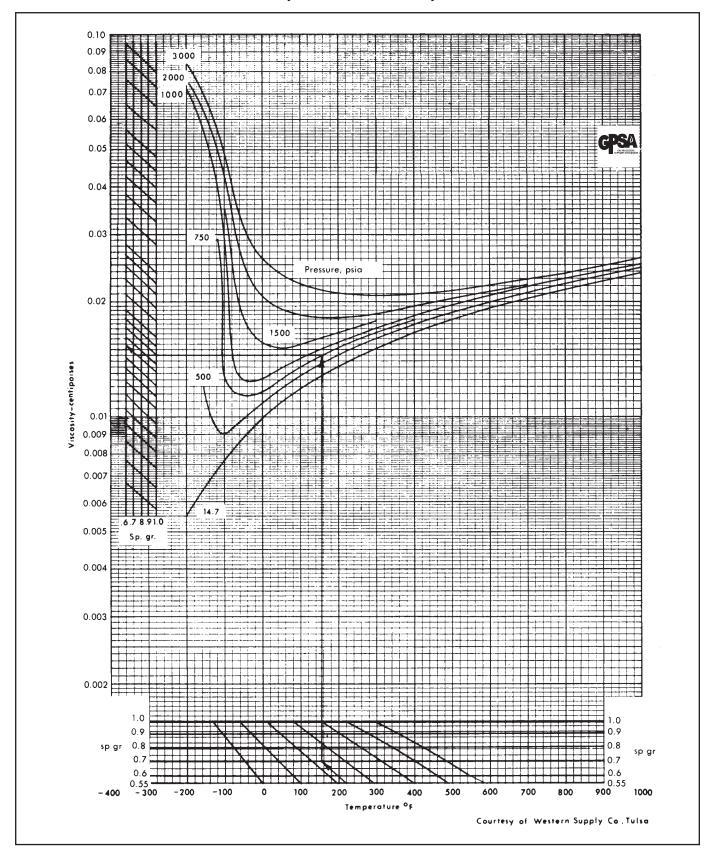



FIG. 23-23 Hydrocarbon Gas Viscosity

SECTION 24

Thermodynamic Properties

This section contains thermodynamic charts, correlations, and calculation procedures.

The enthalpy correlation presents a rigorous method for calculation of enthalpy, followed by an example calculation illustrating the use of the associated charts. Also included is a quicker, approximate method for enthalpy determinations by the use of total enthalpy charts. An entropy correlation and an example calculation showing its use are also presented.

FIG. 24-1

Nomenclature

Н :	=	enthalpy at desired conditions, Btu/lb mole, or Btu/lb	$V = h_f =$	specific volume, cu ft/lb enthalpy of liquid, Btu/lb (Steam Tables)
H^0 :	=	ideal gas state enthalpy	$h_g =$	enthalpy of gas, Btu/lb
$H_0^0 =$	=	enthalpy datum at zero pressure and zero	$h_{fg} =$	enthalpy of vaporization $(h_g - h_f)$ at vapor pressure
		temperature	$s_f =$	entropy of liquid, Btu/(lb · °R)(Steam Tables)
H_{T}^{0} :	=	ideal gas state enthalpy at temperature T	$s_g =$	entropy of gas, Btu/(lb · °R)
$\mathrm{H}_{\mathrm{T}}^{\mathrm{P}}$:	=	enthalpy at desired pressure and temperature	$s_{fg} =$	entropy change on vaporization $(s_g - s_f)$ at vapor
MW :	=	molecular weight	-8	pressure
P :	=	absolute pressure, psia	$v_f =$	specific volume of liquid, cu ft/lb (Steam Tables)
P_c :	=	critical or pseudocritical pressure, psia	$v_g =$	specific volume of gas, cu ft/lb
P_r :	=	reduced pressure = P/P_c	$v_{fg} =$	specific volume change on vaporization $(v_g - v_f)$
P_k :	=	convergence pressure for multi-component		at vapor pressure
		systems, psia	$x_i =$	mole fraction of component i in liquid phase
T :	=	absolute temperature, °R	$y_i =$	mole fraction of component i in vapor phase
T_c :	=	critical or pseudocritical temperature, °R	Greek	
T_r :	=	reduced temperature = T/T_c		
R =	=	gas constant, Fig. 1-4		summation for all components
$^{\circ}\mathrm{R}$:	=	degrees Rankine = °F + 459.7	ω =	acentric factor
S =	=	entropy, Btu/(lb mole · °R) or Btu/(lb · °R)	Subscrip	ots
S^0	=	ideal gas state entropy	m =	mixture property
Sp gr	=	specific gravity, dimensionless	i =	any one component in a multicomponent mixture
			1 —	any one component in a manucomponent infature

DEFINITIONS OF WORDS AND PHRASES USED IN

THERMODYNAMIC PROPERTIES

 $\begin{array}{l} \textbf{Acentric factor:} \ A \ factor \ frequently \ used \ in \ correlating \ thermodynamic properties \ -- \ defined \ by \ \omega = -log \ P_{vr} - 1.00 \ where \ Pvr = \ reduced \ vapor \ pressure \ at \ T_r = 0.7. \end{array}$

Corresponding states: The theory that proposes pure components and mixtures have the same relative thermodynamic properties when at the same relative thermodynamic state.

Critical pressure: The vapor pressure at the critical tempera-

Critical temperature: The temperature at which vapor and liquid properties become identical.

Datum: A reference point.

Density: Mass per unit volume of a substance.

Enthalpy: Heat content, H, composed of internal energy, E, and PV. Usually expressed as H = E + PV.

Entropy: A thermodynamic quantity, S, defined by the equation -dS = dQ/T where Q is the amount of heat entering or leaving the system reversibly at absolute temperature, T.

Ideal gas: A gas which follows the equation PV = nRT where n = number of moles, and V is volume per lb mole.

Irreversibility: The degree of heat or work that is lost when a system is taken from one pressure and temperature to another pressure and/or temperature and returned to its original condition.

Mole(s): The mass of substance divided by its molecular weight, expressed usually either as lb-moles or gm-moles.

Phase envelope: The boundaries of an area on the P-T diagram for the material which encloses the region where both vapor and liquid coexist.

Quality: The weight fraction of vapor in a vapor-liquid mixture.

Reduced pressure: The ratio of the absolute pressure to the critical pressure.

Reduced temperature: The ratio of the absolute temperature to the critical temperature.

Saturated water: Water at its boiling temperature for the pressure exerted on it.

Saturated steam: Steam at the boiling temperature of water for the pressure exerted on it but containing no liquid water.

Specific volume: The volume of a substance per unit mass. (Inverse of density.)

Thermodynamics: The science which deals with the energy of systems and its changes and effects.

ENTHALPY BEHAVIOR

The change of enthalpy with temperature and pressure is complex. Predicting the enthalpy for a pure component or mixture is multi-step procedure that requires information that can only be obtained by experimental measurement. For pure components, use of a P-H diagram like those shown in Figs. 24-15 to 24-26 is recommended.

The enthalpy behavior of mixtures can be predicted through thermodynamic correlations. Use of a good contemporary equation of state is recommended for mixture enthalpy predictions. Fig. 24-2 shows graphically the change in enthalpy of three gas streams and two liquid streams as pressure is changed at constant temperature. Values for the plot were calculated by the Soave¹⁰ version of the Redlich-Kwong equation of state. ¹¹ The curves in Fig. 24-2 are for no phase change and show typical behavior of gas phase enthalpy decreasing and liquid phase enthalpy increasing with increasing pressure.

Enthalpies for mixtures of real gases and liquids can be predicted by hand calculation methods. The ones recommended for use are based on an extension of the principle of corresponding states and are shown graphically in Fig. 24-6 and 24-7.

Ideal Gas State Enthalpies

Enthalpies for pure component gases are readily correlated as a power series of temperature for a wide range of components including all of those that occur in natural gas streams. Typical values for natural gas components are plotted in Figs. 24-3 and 24-4 for temperatures from –200 to 900 °F. Enthalpies for gas mixtures can be obtained as the mole fraction average if molar enthalpies are used, or the weight fraction average if mass enthalpies are used.

Many natural gas streams contain undefined, or pseudo, components. Ideal gas enthalpies for pseudo components are shown in Fig. 24-5. To use Fig. 24-5 the specific gravity, molecular weight and temperature (relative density, molecular mass and temperature) must be known. Fig. 24-5 is for paraffinic mixtures and should not be used for pseudo components derived from aromatic crude oils.

The enthalpy datum chosen is zero enthalpy at zero absolute pressure and zero absolute temperature, the same datum as used in API Project 44. The choice of datum is arbitrary and a matter of convenience. Enthalpy differences, the values of interest, are not affected by the datum chosen. However, the same enthalpy datum should be used for all components in any one calculation.

CHANGE OF ENTHALPY WITH PRESSURE

For purposes of correlation and calculation, the ideal and real gas behaviors are treated separately. The mixture ideal gas enthalpy at a specified temperature is calculated; the enthalpy change of the real gas mixture is calculated from a correlation prepared from experimental enthalpy measurements on a variety of mixtures. This relation can be expressed as:

$$H_T^P - H_0^0 = (H_T^0 - H_0^0) - (H_T^0 - H_T^P)$$
 Eq 24-1

where:

 $(H_T^0-H_0^0)$ the ideal gas state enthalpy above the datum, H^0 , at the desired temperature (subscript T), Btu/lb mole

 $(H_T^0-H_T^P)$ the change of enthalpy with pressure, given by the enthalphy difference between the ideal gas state enthalpy and the enthalpy at the desired pressure, both quantities at the specified temperature, Btu/lb mole

Since H_0^0 is zero at the chosen datum, zero absolute temperature, Equation 24-1 can be written:

$$H_T^P = H_T^0 - (H_T^0 - H_T^P)$$
 Eq 24-2

Which can be simplified to:

$$H = H^0 - (H^0 - H)$$
 Eq 24-3

Values for the change of enthalpy with pressure for a real gas or liquid are obtained from a correlation based on the principle of corresponding states. The original correlation was extended to low reduced temperatures to cover low temperature gas processing applications. The correlation shown in Figs. 24-6 and 24-7 consists of two parts. One part gives the change of enthalpy with pressure for a simple fluid (fluid with zero acentric factor). The second part is a correction for deviation of a real fluid from the ideal fluid change of enthalpy with pressure. The value of $(\mathrm{H}^0-\mathrm{H})$ in Equation 24-3 is calculated by:

$$(H^{0} - H) = RT_{c} \left\{ \left[\frac{(H^{0} - H)}{RT_{c}} \right]^{(0)} + \omega \left[\frac{(H^{0} - H)}{RT_{c}} \right]^{(\prime)} \right\}$$
 Eq 24-4

where:

 $[(H^0-H)\,/\,RT_c]^{~(0)}$ $\,$ the change of enthalpy of a simple fluid with pressure from Fig. 24-6

 $[(H^0-H)\,/\,RT_c]$ $^{(\prime)}$ deviation from the change for a simple fluid from Fig. 24-7

Figs. 24-6 and 24-7 can be used for gas and liquid mixtures. If the mixture is a gas, use the lower chart in each figure. For liquids read the value from the isotherms at the top of the chart. The units of (H 0 – H) will depend on the units of the universal gas constant, R, and $T_{\rm c}$. For (H 0 – H) in Btu/lb mole, R = 1.986 Btu/(lb mole \cdot °R) and $T_{\rm c}$ is in °R.

The reduced temperature and pressure are defined as $T_{\rm r}=T/T_{\rm c}$ and $P_{\rm r}=P/P_{\rm c}$, where absolute temperature and pressure must be used. Values for pure component critical temperature, pressure and acentric factor are in Section 23 Physical Properties. Section 23 also contains graphs relating ASTM distillation temperature, molecular weight, specific gravity (relative density), critical temperature, and critical pressure for undefined fractions. The fraction acentric factor can be estimated from Equation 23-17.

To use Figs. 24-6 and 24-7, the mixture composition must be known. The mole fraction average (pseudo) critical temperature and pressure are calculated using Kay's Rule4 as illustrated in Fig. 23-7 ($T_{Cm} = \sum y_i T_{Ci}$ and $P_{Cm} = \sum y_i P_{Ci}$). The mole fraction average mixture enthalpy is calculated from:

$$H_m^0 = \sum y_i H_i^0$$
 Eq 24-5

The values of H₁⁰ are obtained by multiplying the enthalpy value from Figs. 24-3 and 24-4 by the molecular weight of the individual component.

The mole fraction average acentric factor is:

$$\omega_{\rm m} = \sum y_{\rm i} \, \omega_{\rm i}$$
 Eq 24-6

The information necessary to evaluate enthalpies for the mixture from Figs. 24-3 to 24-7 is now known. Use of the method will be clearer after study of the following illustrative calculation.

SECTION 26

Members

Gas Processors Suppliers Association

6526 East 60th Street Tulsa, Oklahoma 74145 Phone: 918-493-3872 Fax: 918-493-3875 Email: gpsa@GPAglobal.org

http://gpsa.GPAglobal.org

that they provide to the industry. Services begin on page 26-15; Supplies begin on page 26-26.

The following is a listing of the members of GPSA. Please contact them directly for further information. Behind this listing of members, the GPSA companies are classified by the type of services and supplies

Company& Address	Phone	Fax
A+ Corporation 41041 Black Bayou Road Gonzales, LA 70737 http://www.geniefilters.com	225-644-5255	225-644-3975
Accurate Gas L.L.C. 116 Board Road Lafayette, LA 70508 http://www.accurategasllc.com	337-269-1217	337-269-1978
Accurate Lab Audits, LLC P.O. Box 248 Ville Platte, LA 70506	337-280-1003	
Adsorption Technical Service, LLC 15138 Windsdowne Lane Cypress, TX 77429	281-256-0868	281-256-1996
Aeon PEC 505 Aero Drive Sheveport, LA 71107 http://www.aeonPEC.com	318-221-0122	318-425-2943
Aeros Environmental, Inc. 18828 Highway 65 Bakersfield, CA 93308	661-391-0112	661-391-0153
Afton Pumps, Inc. 7335 Ave. No. Houston, TX 77011 http://www.aftonpumps.com	713-923-9731	713-923-3902
Air Products and Chemicals 7201 Hamilton Blvd Allentown, PA 18195 http://www.airproducts.com	610-481-4544	
Airgas, Inc. 110 W. 7th St., Ste. 1400 Tulsa, OK 74119 http://www.airgas.com		
Alfa Laval Inc. 5400 International Trade Drive Richmond, VA 23231 http://www.alfalaval.com	804-222-5300	

Company& Address	Phone	Fax
Allied Equipment 8000 N. Golder Odessa, TX 79764	432-367-6000	
Alpine Site Services 5990 Kipling Parkway, #001 Arvada, CO 80004 http://www.alpinesites.com	303-420-0048	303-431-4843
AMCS Corporation 135 US Highway 202-206 Bedminister, NJ 07921 http://www.amcscorp.com	908-719-6560	
AMEC Oil & Gas Americas 10777 Clay Rd. Houston, TX 77041 http://www.amec.com	713-570-8510	
American Cleaning Systems, Inc. 5261 W. 42nd St. Odessa, TX 79764 http://www.amcleaning.net	432-381-3740	
American Steel Pipe 1501 31st Ave. N. Birmingham, AL 35201 http://www.american-usa.com	205-307-2967	205-325-8194
Ametek Process Instruments 150 Freeport Road Pittsburgh, PA 15238	905-634-4401	
Amspec LLC 11725 Port Road Seabrook, TN 77586 http://www.amspecllc.com	713-330-1000	713-330-4000
Analytical Instruments Corporation 9215 Solon Road, Ste. A4 Houston, TX 77064	713-460-5757	713-460-1987
Analytical Systems International 9215 Solon Road, Ste. A4 Houston, TX 77064 http://www.asikeco.com	281-516-3950	281-351-8925

Company& Address	Phone	Fax
Anguil Environmental 8855 N. 55th St. Milwaukee, WI 53223 http://www.anguil.com	414-365-6400	414-365-6410
Angus Measurement Services 4310 SW 33rd St. Oklahoma City, OK 73119	405-375-4970	
Applied Consultants, Inc. 1221 Abrams Rd., Ste. 225 Richardson, TX 75081 http://www.appliedconsultants.com	972-235-1958	972-235-9010
ARC Energy Equipment 252 Judice Road Sunset, LA 70587 http://www.arcenergyequipment.com	337-852-1105	337-662-3153
Ardent Services LLC 170 New Camellia Blvd., Ste. 200 Covington, LA 70433	281-703-4649	
Ariel Corporation 35 Blackjack Road Mt. Vernon, OH 43050 http://www.arielcorp.com	740-397-0311	740-397-3856
ASK Industries 24 Smith Road, Ste. 220 Midland, TX 79705 http://www.askindustries.com	866-366-5622	432-686-9415
Atlas Copco Gas and Process 3037 Industrial Parkway Santa Maria, CA 93455 http://www.atlascopco-gap.com	805-928-5757	805-925-3861
Audubon 10205 Westheimer Road, Ste. 600 Houston, TX 77042 http://www.aechou.com	713-728-7516	281-669-0591
AXH Air-Coolers 9717 East 42nd St., Suite 136 Tulsa, OK 74146 http://www.axh.com	918-663-0811	918-663-1972
AYERS, Michael, P.E. 3130 Walnut Bend #320 Houston, TX 77042-4779	713-575-8164	
Azota Ltd. 9894 Bissonnet, Ste 580 Houston, TX 77036 http://www.azotaltd.com	281-768-4314	281-768-4370
B. enviroSAFE, Inc. 601 Lonesome Prairie Trail Haslet, TX 76052 http://www.benvirosafe.com/	817-439-4767	817-439-4149
Baker & O'Brien, Inc. 12221 Merit Dr., Ste. 1150 Dallas, TX 75251 http://www.bakerobrien.com	214-368-7626	
Barry D. Payne & Associates, Inc. 10707 Corporate Dr. #222 Stafford, TX 77477 http://www.bdpayne.com	281-240-4488	281-240-3913
Bartlett Equipment Co. 4951 S Mingo Rd Tulsa, OK 74146 http://www.bartlettequipment.com	918-627-7040	918-691-7405

Company& Address	Phone	Fax
BASF Corporation 1111 Bagby Street, Ste. 2600 Houston, TX 77002 http://www.basf.com	713-759-3024	713-759-3001
BCCK Engineering, Inc. 2500 No. Big Spring Midland, TX 79705 http://www.bcck.com	432-685-6095	432-685-7021
Bechtel 3000 Post Oak Boulevard Houston, TX 77056-6503 http://www.bechtel.com	713-235-2000	713-235-4820
BEI Engineers 3741 Red Bluff Road, Ste. 200 Pasadena, TX 77503 http://www.bei-us.com	713-475-2424	
BENTEK Energy LLC 32045 Castle Court Evergreen, CO 80439 http://www.bentekenergy.com	303-988-1320	303-988-6409
Best PumpWorks 8885 Monroe Houston, TX 77061 http://www.bestpumpworks.com	713-956-2002	713-956-2141
Bexar Energy Holdings Inc. 111 Soledade, Ste. 830 San Antonio, TX 78205 http://www.bexarenergy.com	210-342-7106	210-223-0018
BFX Fabrication LLC 13465 Midway Road, Ste. 300 Dallas, TX 75244	469-374-5368	
Black & Veatch Corp. Energy Division - Oil & Gas Houston, TX 77056 http://www.bv.com	713-416-9641	
Blue Star Pipe 5700 Granite Parkway, Ste. 430 Plano, TX 75024	214-329-1233	
Bowden Construction Co. P.O. Box 12308 Odessa, TX 79768 http://www.bowdenconstruction.com	432-366-8877	432-366-0936
Brahma Group Inc. 1132 South 500 West Salt Lake City, UT 84101 http://www.brahmagroupinc.com	801-521-5200 x 142	
Brenntag Pacific Inc. P.O. Box 12430 Ogden, UT 84412 http://www.brenntag.com	801-627-4540	802-334-5141
Brice Equipment Co. P.O. Box 7945 Midland, TX 79708	432-697-3111	
Bruker Daltonics 6 Glenway Drive The Hills, TX 78738	512-422-7157	
Bryan Research & Engineering, Inc. P.O. Box 4747 Bryan, TX 77805 http://www.bre.com/	979-776-5220	979-776-4818

	T	I _
Company& Address	Phone	Fax
Buffalo Gap Instrumentation & Electrical 325 N. West Street Buffalo Gap, TX 79508 http://www.bgie.net	325-572-3389	325-572-3197
Burckhardt Compression U.S. 7240 Brittmoore Rd., Ste. 100 Houston, TX 77041 http://www.burckhardtcompression.com	281-582-1059	
BWFS Industries 5637 Etheline Houston, TX 77039 http://www.bwfsindustries.com	281-590-9391	281-449-8563
C.R.C. Consulting P.O. Box 736 Perryton, TX 79070 http://www.crc-consulting.com	806-435-3418	
C3 Resources LLC 2050 No. Loop W., Ste. 227 Houston, TX 77018 http://www.c3resources.com	713-476-9958	713-476-9975
Calgon Carbon Corporation 500 Calgon Carbon Dr. Pittsburgh, PA 15205 http://www.calgoncarbon.com	800-422-7266	
Cameron Process & Compression Systems 11210 Equity Drive, Ste. 100 Houston, TX 77041 http://www.c-a-m.com/cs	713-895-3460	
Cameron Process Systems 16250 Port Northwest Drive Houston, TX 77041 http://www.c-a-m.com/cs	866-754-3562	713-354-1923
Cameron Valves and Measurement 7200 Interstate 30 Little Rock, AR 72209 http://www.c-a-m.com	501-568-6000	501-570-5785
Catalytic Combustion Corporation 709 21st Avenue Bloomer, WI 54724 http://www.catalyticcombustion.com	715-568-2882	715-568-2884
Catalytic Products International, Inc. 980 Ensell Road Lake Zurich, IL 60047 http://www.cpilink.com	847-483-0334	847-438-0944
Catamount Constructors 1250 Bergen Parkway B200 Evergreen, CO 80439 http://www.catamountconstructors.com	303-710-3593	
Caterpillar Inc. 13105 NW Freeway, Ste. 1010 Houston, TX 77040 http://www.cat.com	713-329-2207	713-329-2211
CB&I Two Riverway, Suite 1300 Houston, TX 77056 http://www.cbi.com	713-375-8000	713-375-8005
CECA Molecular Sieves 2000 Market Street Philidelphia, PA 19103 http://www.siliporite.com	281-251-4812	281-251- 4812, ext. 2

_		
Company& Address	Phone	Fax
CEI Engineering Associates 3030 LBJ Freeway, Ste. 100 Dallas, TX 75234 http://www.ceieng.com	972-488-3737	
CES Package Systems 21 Waterway Avenue The Woodlands, TX 77380 http://www.cespackagesystems.com	281-932-3675	
CH2M Hill 14701 St. Mary's Lane, Ste. 300 Houston, TX 77079 http://www.ch2m.com	281-721-8400	281-721-8401
Chapman Corporation 331 South Main Street Washington, PA 15301	724-250-2245	
Chart Energy & Chemicals, Inc. 8665 New Trails Dr., #100 The Woodlands, TX 77381 http://www.chart-ec.com	612-227-4949	
Chemical Products Industries, Inc. 7649 SW 34th St. Oklahoma City, OK 73179 http://www.chemicalproductsokc.com	405-745-2070	405-745-2276
Chemstations, Inc 11490 Westheimer Suite 900 Houston, TX 77077 http://www.chemstations.com	713-978-7700	713-978-7727
Chiyoda Corp. 2-12-1 Tsurumicho, Tsurumi-ku Yokohama, Kanagawa, JAPAN 230-8601 http://www.chiyoda-corp.com/en/	81-45-506- 4630	
Chromatic Industries 15B S. Trade Center Pkwy. Conroe, TX 77385 http://www.hemiwedge.com	936-539-5770	
Cimation 10205 Westheimer Rd., Ste. 100 Houston, TX 77042 http://www.cimation.com	713-452-3350	
City Pipe & Supply Corp. 2108 W. 2nd Odessa, TX 79763 http://www.citypipe.com	800-688-7473	432-333-2300
Clary E&I Services, LLC 110 W. Henderson Overton, TX 75684 http://www.claryei.com	903-834-0115	903-834-0116
Clear Creek Construction 945 E. Britton Rd Oklahoma City, OK 73114 http://www.clearcreekusa.com	405-478-3430	
Coastal Chemical Co. LLC 5300 Memorial Drive, Suite 250 Houston, TX 77007 http://www.coastalchem.com	713-865-8787	713-865-8788
Coastal Flow Measurement, Inc. 2222 Bay Area Blvd., Suite 200 Houston, TX 77058 http://www.coastalflow.com	281-282-0622	281-282-0791

Company& Address	Phone	Fax
Compressor Engineering Corp. (CECO) 5440 Alder Houston, TX 77081	713-664-7333	
Compressor Systems, Inc. P.O. Box 60760 Midland, TX 79711	432-495-3228	
CompressorTech Two 12777 Jones Road, Ste. 225 Houston, TX 77070 http://www.compressortech2.com	832-205-3047	
Condit Co. 7255 E 46th ST Tulsa, Ok 74145 http://www.conditcompany.com	918-663-5310	918-610-3451
Conestoga-Rovers & Associates 2270 Springlake Road, Suite 800 Dallas, TX 75234 http://www.craworld.com	972-331-8500	972-331-8501
Connelly-GPM, Inc. 3154 So. California Ave. Chicago, IL 60608	312-247-7237	
Consulting and Field Services 1600 North Waverly Street Ponca City, OK 74601 http://www.cfsinspection.com	580-762-4510	580-762-1635
Contek Solutions LLC 6221 Chapel Hill Blvd., Ste. 300 Plano, TX 75093 http://www.contekllc.com	469-467-8296	
Cook Compression 2203 Timberlock, Ste. 229 The Woodlands, TX 77380	281-636-8431	
Corpac Steel Products Corp. 20803 Biscayne Blvd., Suite 502 Miami, FL 33021 http://www.corpacsteel.com	305-918-0540	305-931-2251
Corrosion Resistant Alloys 1310 W. Sam Houston Parkway North Houston, TX 77043	281-734-6280	
Credence Gas Services LLC P.O. Box 2388 Alvin, TX 77512 http://www.credencegasservices.com	281-331-2219	281-331-2235
Criterion Catalyst and Technologies LP 16825 Northchase Drive, Ste. 1000 Houston, TX 77060	281-875-7899	
Croft Automation LLC 712 Austin Ave Waco, TX 76701 http://www.croftautomation.com	903-388-6472	254-714-1710
Croft Production Systems, Inc. 19230 FM 442 Needville, TX 77461 http://www.croftsystems.net	979-793-2100	
Cummings Electrical, Inc. 14900 Grand River Road, Ste. 124 Fort Worth, TX 76155 http://www.cummingselec.com	817-355-5300	

Company& Address	Phone	Fax
Cummins Inc. 19739 Lake Stone Court Tomball, TX 77377 http://www.cumminsoilandgas.com	713-416-6235	
Custom Compression Systems 1110 Unifab Road, Suite A New Iberia, LA 70560 http://www.customcompressionsystems.com	337-560-7700	
D.F.Bergman, Inc. 17714 Mossy Ridge Lane Houston, TX 77095	281-859-9633	
Daniel Measurement and Control 9720 Old Katy Rd. Houston, TX 77055	713-827-3874	713-827-3886
DBR Technology Center, Div. Schlumberger 9450 - 17 Avenue Edmonton, Al T6N 1M9 http://www.slb.com	780-463-8638	780-450-1668
DCG Partnership 1, Ltd. 4170A S. Main Pearland, TX 77581		
Detechtion Technologies 24 Greenway Plaza, #802 Houston, TX 77046 http://www.detechtion.com	800-780-9798	713-559-3059
Detector Electronics Corp. 6901 W 110th Street Minneapolis, MN 55438 http://www.Detronics.com	952 941 5665	
Dew Point Control LLC P.O. Box 18887 Sugar Land, TX 77479-8887 http://www.dewpointcontrol.com	281-265-0101	281-265-0107
Dexter Field Services 2826 Morning Star New Braunfels, TX 78132	512-432-4754	
Diablo Analytical Inc. 5141 Lone Tree Way Antioch, CA 94531 http://www.diabloanalytical.com	925-755-1005	925-755-1007
Dickson Process Systems Ltd. P.O. BOX 60478 Midland, TX 79711 http://www.dicksonprocess.com	432-561-8594	432-561-8990
Dresser-Rand Company 4121 Cross Bend Drive Arlington, TX 76016	214-597-7663	
Eaton Metal Products Company 4800 York Street Denver, CO 80216	303-296-5729	
EDG Inc. 10777 Westheimer Rd., #700 Houston, TX 77042	713-977-2347	713-977-2387
Edge Engineering & Science 16360 Park Ten Place, Ste. 300 Houston, TX 77084 http://www.edge-es.com	832-772-3003	
Elkhorn Holdings Inc 71 Allegiance Cir Evanston, WY 82930 http://www.elkhornconstruction.com	307-789-1595	307-789-7145

Company& Address	Phone	Fax
Elliott Group 10940 West Sam Houston Parkway N. Houston, TX 77064 http://www.elliott-turbo.com	281-517-7130	281-955-5072
EMD, Inc. 1411 Twin Oaks Wichita Falls, TX 76302 http://www.emdinc.com	940-322-2206	940-322-1719
Empact Analytical Systems Inc. 362 So. Main Brighton, CO 80601	303-637-0150	
EnDyn Ltd. 301 West First St. Alice, TX 78332	800-723-6396	361-668-3906
Enerflex 10815 Telge Road Houston, TX 77095	281-345-5022	
Energy Management & Services Co. 9990 Richmond Ave., Ste. 202 South Houston, TX 77042	713-456-7880	713-456-7881
Energy Recovery Inc. 1717 Doolittle Drive San Leandro, CA 94577 http://www.energyrecovery.com	281 633 6662	
Energy Training Solutions 1310 Kingwood Drive Kingwood, TX 77339 http://www.energytrainingsolutions.com	281-783-5265	281-360-3874
EnerSys Corporation 12875 Capricorn Street Stafford, TX 77477 http://www.EnerSysCorp.com	281-598-7100	281-598-7199
Enerven Compression Services, LLC 8150 N. Central Expressway, Ste. 1100 Dallas, TX 75206 http://www.enerven.com	214-365-3200	214-265-0455
ENGlobal Corporation 12303 Airport Way, Ste. 145 Broomfield, CO 80021 http://www.ENGlobal.com	303-439-4325	
EnRUD Resources, Inc. 1006 Vista Road Pasadena, TX 77504 http://www.enrud.com	713-943-1600	
Enserca Engineering 165 S. Union Blvd., Ste. 1000 Lakewood, CO 80228	303-468-2720	
Entero Corporation 1040 - 7 Ave SW Suite 500 Calgary, AB T2P 3G9 http://www.entero.com	403-261-1820	403-261-2816
EPC Inc. 14128 State Highway 110 South Whitehouse, TX 75791 http://www.epc0392.com	903-939-1555	903-939-1566
EPCON International Inc. 1250 Wood Branch Park Drive, Ste. 600 Houston, TX 77079	281-398-9400	281-398-9488
ESD Simulation Training, Inc. One Riverway, Ste. 1700 Houston, TX 77056 http://www.esd-simulation.com	713-300-3757	

Company& Address	Phone	Fax
eSimulation Inc. 1322 Space Park Drive, Suite A190 Houston, TX 77058 http://www.esimulation.com	713-962-3107	281-893-3319
Evonik Corporation 10200 Grogans Mill Road, Ste. 500 The Woodlands, TX 77380 http://www.evonik.com/northamerica	281-298-0290	
Exeltech 7317 Jack Newell Blvd. N. Fort Worth, TX 76118	817-595-4969	817-595-1290
EXTERRAN 20602 E. 81st St. Broken Arrow, OK 74014 http://www.exterran.com	918-251-8571	918-259-2856
F.W. Murphy P.O. Box 470248 Tulsa, OK 74147 http://www.fwmurphy.com	918-317-4100	918-317-4266
Fabreeka International 13207 Tall Forest Cypress, TX 77429 http://www.fabreeka.com	2818945997	2818970064
Fabwell Corporation 8410 S. Regency Drive Tulsa, OK 74131-3621 http://www.fabwell.com	918-224-9060	
Factory Direct Safety & Environmental 4153 Bluebonnet Drive Stafford, TX 77477 http://www.factorydirectsafety.com	832-532-9992	
Fagen Inc. 1312 Catiline Place Baton Rouge, LA 70816	651-728-2312	
FairFax Operations, LLC 123B N 14th Collinsville, OK 74021 http://www.fairfaxops.com	918-371-5139	918-371-5931
Fairwinds International 128 Northpark Blvd. Covington, LA 70433	985-809-3808	
Federal Services LLC 120 E. Main Street Oklahoma City, OK 73104 http://www.federalcorp.com	405-239-7301	405-232-5438
FESCO, Ltd. 1100 FESCO Avenue Alice, TX 78332 http://www.fescoinc.com	361-661-7015	361-661-7019
FES-Southwest, Inc. 19221 IH-45 South Ste. 340 Conroe, TX 77385 http://www.fessw.com	281-296-7920	281-296-7177
Fisher Controls 205 S Center Street Marshalltown, IA 50158 http://www.fisher.com	641-754-3011	641-754-3026
Fluenta Inc. 1155 Dairy Ashford, Suite 211 Houston, Tx 77079 http://www.fluenta.com	281-972-2004	281-497-8687

Company& Address	Phone	Fax
Fluor Enterprises, Inc. 3 Polaris Way Aliso Viejo, CA 92698	949-349-2231	
FMC Technologies Direct Drive Systems 621 Burning Tree Road Fullerton, CA 92833	720-560-6177	
Foster Wheeler USA Corporation 2020 Dairy Ashford Houston, TX 77077	281-597-3000	281-597-3028
Freese and Nichols, Inc. 4055 International Plaza, Ste. 200 Fort Worth, TX 76109 http://www.freese.com	817-735-7300	
Future Pipe Industries 11811 Proctor Street Houston, TX 77038 http://www.futurepipe.com	281-847-2987	
G2 Partners, LLC 10260 Westheimer Rd., St. 400 Houston, TX 77042 http://www.g2partnersllc.com	713-260-4000	713-260-4099
Garzo, Inc. 4430 Steffani Lane Houston, TX 77041	713-466-8679	713-466-8686
Gas Analytical Solutions, Inc. 19330 Highway 155 South Flint, TX 75762	903-825-2136	903-825-2184
Gas and Supply 111 Buras Drive Belle Chasse, LA 70037 http://www.gasandsupply.com	504-234-7700	
Gas Corporation of America P.O. Box 5183 Wichita Falls, TX 76307 http://www.gas-corp.com	940-723-6015	
Gas Equipment Company, Inc. 11616 Harry Hines Blvd Dallas, TX 75229 http://www.gasequipment.com	972-280-8430	972-620-4142
Gas Packaging Engineering Co. 3000, 150-6th Avenue S.W. Calgary, AB T2P 3Y7 http://www.gaspackages.com	403-538-2164	
Gas Technology Corporation 1425 Greenway Drive, Suite 450 Irving, TX 75038 http://www.gastech.net	972-255-7800	972-550-0071
Gas Treatment Services B.V. Timmerbabriekstraat 12, Bergambacht GV, 2861 http://www.gtsbv.com	31 182 621890	31 182 621891
GE Oil & Gas, Inc. 4424 West Sam Houston Parkway North, Ste. 700 Houston, TX 77041		
GE Power & Water 1101 W. Saint Paul Ave. Waukesha, WI 53188 http://www.dresserwaukesha.com	262-547-3311	262-650-5650

Company& Address	Phone	Fax
GEA Refrigeration North America Inc. 3475 Board Road York, PA 17406 http://www.geafes.com	717-309-3333	
Genesis Systems 1501 10th Street #100 Plano, TX 75074 http://www.callgenesis.com	972-877-5016	
Geolex, Inc. 500 Marquette Ave. NW #1350 Albuquerque, NM 87102 http://www.geolex.com	505-842-8000	
G-Force and Associates, Inc. 5200 W. Highway 377 Tolar, TX 76476 http://www.gforcetx.com	817-573-3960	
Global Compressor, LP 13415 Emmett Road Houston, TX 77084 http://www.globalcompressorparts.com	713-983-8773	713-983-7118
Global Process Systems SDN BHD Level 8 Menara See Hoy Chan, No. 373 Jalan Tun Razak Kuala Lumpur, WP 50400 http://www.globalprocesssystems.com	603 914 53000	603 216 13234
Gly-Tech Services 2054 Paxton St. Harvey, LA 70058 http://www.glytech.com	504-348-8566	504-348-8261
Goar Sulfur Services & Assistance 1522 Hubbard Dr. Tyler, TX 75703		903-561-3008
GRACE Davison 845 Redwing Street Bridge City, TX 77611		
Graves Analytical Services LLC P.O. Box 253 Hugoton, KS 67951	620-428-6053	620-428-6069
Gregory Gas Services, LLC 343592 E. 990 Rd. Chandler, OK 74834 http://www.gregorygasservices.com	918-866-2318	918-866-2263
Groundwater & Environmental Services, Inc. 440 Creamery Way, Ste. 500 Exton, PA 19341 http://www.gesonline.com	800-426=9871 x3022	
GTS Energy 4050 36th Ave. NE Norman, OK 73026 http://www.gtsenergy.com	979-820-0556	
Guild Associates, Inc. 5750 Shier-Rings Road Dublin, OH 43016 http://www.moleculargate.com	908-752-6420	614-798-1972
Gulf Coast Chemical, LLC 220 Jacqulyn Street Abbeville, LA 70510 http://www.gulfcoastchemical.com	337-898-0213	337-893-9927
Gulf Coast Dismantling, Inc. P.O. Box 5249 Pasadena, TX 77508	281-487-0595	281-487-0597

Company& Address	Phone	Fax
Gulf Coast Measurement, Inc. P.O. Box 854 Cypress, TX 77410	281-357-0992	281-357-0994
Gulf Interstate Engineering 16010 Barkers Point Lane, Ste. 600 Houston, TX 77079	713-850-3585	
Gulf Publishing Company 2 Greenway Plaza, Ste. 1020 Houston, TX 77046 http://www.hydrocarbonprocessing.com	713-523-4443	
Gulsby Engineering Inc. 1250 Indiana St Humble, TX 77396	281-446-4230	281-446-5445
GWD 621 17th Street, Ste. 1200 Denver, CO 80293 http://www.gwddesign.com	303-951-9327	
H&S Valve Inc. 6704 No. County Rd. West Odessa, TX 79702	432-362-0486	432-368-5052
H.J. Baker, PE 1511 Rock Ridge Dr. Cleveland, OK 74020	918-358-5286	425-928-2637
Halker Consulting, LLC 9400 Station Street, Ste. 300 Lone Tree, CO 80124 http://www.halkerconsulting.com	303-515-2700	
Hammco Inc. 6901 N 115th E Ave Owasso, OK 74055 http://www.hammco-aircoolers.com	918-272-9575	918-272-9585
Harris Group Inc 1999 Broadway Suite 1500 Denver, CO 80202 http://www.harrisgroup.com	303-291-0355	303-291-0136
Heath Consultants Inc. 9030 Monroe Road Houston, TX 77061 http://www.heathus.com	713-844-1300	713-844-1309
HETSCO, Inc. 505 Pushville Rd. Greenwood, IN 46143 http://www.hetsco.com	317-535-4315	317-535-4684
HJ Baker, PE 1511 Rock Ridge Drive Cleveland, OK 74020	918-358-5286	
Holloman Corp. 333 N. Sam Houston Pkwy, Level 6 Houston, TX 77060	281-260-1060	
Houston Vessel Manufacturing LLC 16250 Tomball Parkway Houston, TX 77086 http://www.houstonvessel.com	713-550-1376	
Howard Measurement Co., Inc. 1637 Enterprise St. Athens, TX 75751 http://www.howardmeasurement.com	903-677-0700	
HPF Consultants, Inc. 601 N. Marienfeld, Suite 200 Midland, TX 79701-4365 http://www.hpfconsultants.com	432-685-4143	432-685-4145

C 0 4 1 1	l pu	I n
Company& Address	Phone	Fax
HSB Solomon Associates, LLC One Lincoln Centre, 5400 LBJ Freeway, Ste. 1400 Dallas, TX 75240 http://www.solomononline.com	972-739-1719	972-233-8332
Hunt, Guillot & Associates 603 Reynolds Drive Ruston, LA 71270 http://www.hga-llc.,com	318-255-6825	
Huntsman Corp. 3040 Post Oak Blvd. Houston, TX 77056	713-235-6000	713-235-6977
HyBon Engineering 2404 Commerce Drive Midland, TX 79704	432-697-2292	432-697-2310
Hydrocarbon Technology Engineering 802 Merritt St., SE Grand Rapids, MI 49507	616-452-3279	616-452-3290
I&S Technical Resources, Inc. 248 Twin Lakes Blvd. West Columbia, TX 77486	832-476-5473	
Ignition Systems & Controls, LP P. O. Box 60372 Midland, TX 79711-0372	915-697-6472	
Industrial Distributors, Inc. 4920 Nome St., Unit A Denver., CO 80239 http://www.idiprocess.com	303-375-9070	303-375-0911
Industrial Engineering Management, Inc. 4444 American Way, #200 Baton Rouge, LA 70816	225-214-4444	
Industrial Gas Technology, Inc. 150 Vanderbilt Ct. Bowling Green, KY 42103 http://www.industrialgastechnology.com	270-783-0538	
INEOS Oxide 2901 Wilcrest Suite 205 Houston, TX 77042 http://www.ineos.com	713-243-6200	713-243-6220
International Oil & Gas Consultants Pte, Ltd. 360 Orchard Road, #12-02 International Bldg. Singapore, 238869 http://www.iog-consultants.com	+65 6235 9030	+65 6235 6180
Intertek 801 Travis, Ste. 1500 Houston, TX 77002 http://www.intertek.com	713-430-8601	
Invensys-Foxboro 8610 S. 66th E. Ave. Tulsa, OK 74133 http://www.iom.invensys.com	918-492-6301	918-492-6302
IPD 23231 Normandie Ave. Torrance, CA 90501 http://www.ipdparts.com	310-602-5317	310-530-2708
ISGAS 5807 Northdale Street Houston, TX 77087	713-645-5886	713-645-0661

Company& Address	Phone	Fax
J MAR & Associates 15455 Dallas Parkway Suite 220 Addison, TX 75001 http://www.jmarassociates.com	972-732-8301	
J. H. Foglietta Consulting LLC 5827 Fairdale Lane Houston, TX 77057	713-962-0470	
J.W. Williams Inc.,a Flint Energy Services Co. 19814 G.H. Circle Waller, TX 77084	936-931-2424	936-931-2225
JEM Resources & Engineering, Inc. 10 Desta Drive, Ste. 175 Midland, TX 79705 http://www.jemengineering.com/	432-352-0802	
JFE Engineering Corp. 2-1 Suehiro-cho, Tsurumi-Ku, Yokohama, 230-8611	81 45 505 07772	81 45 505 08941
JGC Corp. 2-3-1 Minato mirai, Nishi-ku Yokohama, Ka 220-6001 http://www.jgc.co.jp	045-682-8468	045-682-8835
John M. Campbell & Company 1215 Crossroads Blvd Norman, OK 73072 http://www.jmcampbell.com	405-321-1383	405-321-4533
Johnson Filtration Products, Inc. P.O. Box 30010 Amarillo, TX 79120	806-371-8033	806-372-5257
Johnson Matthey Catalysts 4106 New West Road Pasadena, TX 77507 http://www.jmcatalysts.com	713-598-4115	281-291-0721
Johnson Screens 16430 Park Ten Place Houston, TX 77084 http://www.johnsonscreens.com	832-590-4177	832-590-2050
Jonell, Inc P.O. Box 1092, 900 Industrial Pkwy Breckenridge, Tx 76424 http://www.jonellinc.com	254-559-7591	254-559-9863
Jord International 11200 Richmond Ave., #301 Houston, TX 77082 http://www.jord.com.au	832-300-7100	832-300-7104
Joule Processing LLC. 3200 Southwest Freeway, Ste. 2390 Houston, TX 77027 http://www.jouleprocessing.com	713-481-1864	713-481-1887
JV Industrial Companies 4040 Red Bluff Pasadena, TX 77503	281-842-9353	
J-W Power Company 7074 S. Revere Parkway Centennial, CO 80112 http://www.jwoperating.com	720-385-3030	866-741-2025
Kahuna Ventures 10355 Westmoor, Ste. 250, Westminster, CO 80021	303-451-7374	
Kams, Inc. 1831 NW 4th Dr. Oklahoma City, OK 73106	405-232-2636	405-232-3107

Company& Address	Phone	Fax
Kane Environmental Engineering 5307 Oakdale Creek Court Spring, TX 77379	281-370-6580	281-379-3735
KASKA, LLC 330 South Mill Pryor, OK 74361	918-825-3763	
KBC Advanced Technologies 15021 Katy Freeway, Ste. 600 Houston, TX 77094 http://www.kbcat.com	281-293-8200	
KBR, Inc. 601 Jefferson Street Houston, TX 77007 http://www.kbr.com	713-753-2000	713-753-2000
Kenny Electric 901 SW Frontage Rd. Fort Collins, CO 80254 http://www.kenny-electric.com	970-212-4334	970-490-2878
Kimray Inc. 52 NW 42nd Street Oklahoma City, OK 73118	405-525-6601	405-525-5630
Kleinfelder 7805 Mesquite Bend, Suite 100 Irving, Tx 75063 http://www.kleinfelder.com	972-868-5934	972-409-0008
Knighten Industries Inc. 3323 NC Rd. West Odessa, TX 79764	432-362-0468	432-362-9813
Koch-Glitsch, LP 4111 East 37th Street North Wichita, KS 67220 http://www.koch-glitsch.com	316-828-7208	316-828-7985
Kodiak Gas Processing LLC P.O. Box 418 Wilmette, IL 60091	214-601-6655	
KW International 1223 Brittmoore Rd. Houston, TX 77043 http://www.kwintl.com	713-468-9581`	713-468-2770
L.A. Turbine 29151 Avenue Penn Valencia, CA 91355 http://www.laturbine.com	661-294-8290	661-294-8249
Laboratory Services 2609 W. Marland Hobbs, NM 88240	575-397-3713	
Lauren Engineers & Constructors 22503 Katy Freeway Katy, TX 77450 http://www.laurenec.com	281-994-4232	
LCM Industries, Inc. 1605 S. Marlin Dr. Odessa, TX 79763 http://www.lcmindustries.com	432-332-5516	432-332-5519
L-Con, Inc. Engineers/Constructors 12301 Kurland Dr., Ste. 200 Houston, TX 77034 http://www.L-Con.com	281-484-5266	
LIG Midstream Co. LLC 615 N. Upper Broadway, Ste. 1200 Corpus Christi, TX 78401	361-654-6510	

Company& Address	Phone	Fax
Linde Process Plants, Inc. 6100 S. Yale, Ste. 1200 Tulsa, OK 74136 http://www.lppusa.com	918-477-1200	918-477-1100
LKS Midstream Consulting LLC 5960 West Parker Road #278 - 233 Plano, TX 75093 http://lksmidstream.com	469-443-0637	
Lockwood International 2209 N. Padre Island Dr. St. Y Corpus Christi, TX 78468 http://lockwoodint.com	361-815-8275	361-289-8839
Louisiana Valve Source, Inc. 101 Metals Dr. Youngsville, LA 70592 http://www.lavalve.com	337-856-9100	337-857-2969
M & J Valve 4150 South 100 East Ave., Suite 200W Tulsa, OK 74146	918-663-9595	
M Chemical Co. 850 Colorado Blvd Los Angeles, CA 90041 http://www.mchemical.com	323-254-3600	323-257-6968
M&H Enterprises, Inc. 19450 Hwy 240, #600 Houston, TX 77070 http://www.mhes.com/	713-974-3627	
Martin Energy Consultants P.O. Box 8064 The Woodlands, TX 77387	281-367-9401	
Master Corp. 1330 East 8th St., Suite 105 Odessa, TX 79761-4713 http://www.mastercorporation.com	432-580-0600	432-335-0600
Masters Process Equipment 26118 North IH-45 Spring, TX 77386 http://www.mastersprocess.com	281-367-5699	281-367-5685
McAfee & Taft 1717 S. Boulder Ave, Ste. 900 Tulsa, OK 74119 http://www.mcafeetaft.com	918-587-0000	
McJunkin Red Man Corporation P.O. Box 4395 Odessa, TX 79760	972-602-4075	
Mechnical Equipment, Inc. P.O. Box 1800 Midland, TX 79702	432-687-0601	
MEGTEC Systems Inc. 830 Prosper Road De Pere, WI 54115	920-339-2787	
MEI LLC 138 Canal Street, Suite 501 Pooler, GA 31322 http://www.mei-consult.com	912-355-8001	912-355-0065
MHBT, Inc. 8144 Walnut Hill Lane, 16th Floor Dallas, TX 75231	972-770-1655	
Michell Instruments Inc. 14915 Terra Point Cypress, TX 77429 http://www.michell.com/us	281-728-3982	

Company& Address	Phone	Fax
MidCon Compression LLC P.O. Box 18881 Oklahoma City, OK 73154 http://www.midconcompression.com	405-935-4159	405-849-0003
Mid-States Supply 1716 Guinotte Ave. Kansas City, MO 64120 http://www.midcoonline.com	800-825-1410	816-842-3630
Midstream Energy Group, Inc. 10707 Corporate Drive, Ste 158 Stafford, TX 77477 http://www.midstreamenergygroup.com	281-277-5560	
Midway Laboratory Inc. 315 Main Street Taft, CA 93268 http://www.midwaylaboratory.com	661-765-2364	661-765-6920
MIRATECH Corp. 420 So. 145th East Ave. Tulsa, OK 74108	918-622-7077	918-622-3928
Mobile Analytical Labs Inc. P. O. Box 69210 Odessa, TX 79769	432-337-4744	
MODEC International Inc. 14741 Yorktown Plaza Houston, TX 77040 http://www.modec.com	281-529-8100	281-529-8102
Modern Project Services TJ Carmody Cedar Rapids, IA 52406 http://www.modernprojectservices.com	319-730-8030	319-364-8368
Monico Monitoring, Inc. 5527 Louetta Road, Ste. D Spring, TX 77380 http://www.monicoinc.com	281-350-8751	
Moore Control Systems Inc. 1435 Katy-Flewellen Katy, TX 77494 http://www.moore-control.com	281-392-7747	281-392-7727
Morrow Renewables LLC P.O. Box 61447 Midland, TX 79711 http://www.morrowrenewables.com	918-432-570- 4200	
Movilab, S.A. de C.V. Paseo de Francia 163 piso 1 Naucalpan, Mexico 53120	525553442121 X102	
MSES Corrosion Products Division 609 West Main St. Clarksburg, WV 26302 http://www.msesproducts.com	304-624-9700	304-622-0981
Mueller Environmental Designs 7607 Wright Rd Houston, TX 77041 http://www.muellerenvironmental.com	832-300-1122	713-465-0997
Mustang Cat 12800 NW Freeway Houston, TX 77040	713-460-7238	
Nalco Chemical Co. 4500 S Lakeshore Drive Tempe, AZ 85282 http://www.nalco.com	630-305-1000	480-774-0185

Company& Address	Phone	Fax
Network International 3555 Timmons Lane, Ste. 1200 Houston, TX 77027 http://www.networkintl.com	713-659-7500	713-850-0808
Neuman & Esser USA, Inc. 1502 East Summitry Circle Katy, TX 77449 http://www.neuman-esser.com	281-497-5113	281-497-5047
New Tech Global Ventures 202 Madison Square Colleyville, TX 76034	817-821-8107	
Nextteq LLC 8406 Benjamin Road, Ste. J Tampa, FL 33634 http://www.nextteg.com	877-312-2333	877-312-2444
Niagara Blower Heat Transfer Solutions 673 Ontario St Buffalo, NY 14207 http://www.niagarablower.com	716-875-2000	716-875-1077
Nicholas Consulting Group Inc. 600 N. Marienfeld, Suite 390 Midland, TX 79701 http://www.thencg.com	432-570-8093	432-683-1993
Norriseal 11122 West Little York St. Houston, TX 77041 http://www.norriseal.com	713-466-3552	713-896-7386
Norwood S&S, LLC 6415 Calle Lozano Dr. Houston, TX 77041-2559 http://www.NorwoodSS.com	281-558-2946	281-558-8405
Nova Molecular Technologies 1 Parker Place, Ste. 725 Janesville,, WI 53545	608-754-6682	
Oil & Gas Awards 60 A George Row London, SE164WA http://www.oilandgasawards.com	00121059 18471	
Omni Flow Computers, Inc. 12620 W. Airport Blvd., Ste. 100 Sugar Land, TX 77479 http://www.omniflow.com	281-240-6161	281-240-6162
Onsite Power Inc. 6525 S. Riviera Way Aurora, CO 80016	303-690-8486	
Optimized Gas Treating, Inc. P.O. Box 125 Clarita, OK 74535 http://www.ogtrt.com	580-428-3535	580-428-3535
Optimized Pipeline Solutions 59 Joshua Court Lake Jackson, TX 77566	979-583-8839	
Optimized Process Designs 25610 Clay Road Katy, TX 77493 http://www.opd-inc.com	281-371-7500	281-371-0132
Optimized Process Furnaces 3995 S Santa Fe Chanute, KS 66720 http://www.firedheater.com	620-431-1260	620-431-6631

Company& Address	Phone	Fax
Ortloff Engineers, Ltd. 415 W. Wall, Ste. 2000 Midland, TX 79701 http://www.ortloff.com	432-685-0277	
Pantechs Laboratories, Inc. 5915 50th Street Lubbock, TX 79424 http://www.pantechs.com	806-797-4325	806-797-4474
Paragon Field Services 500 Main St La Marque, TX 77568 http://www.paragontexas.com	409-935-6602	409-935-9361
Parker Hannifin Corp. P. O. Box 599 Oxford, MI 48371	248-628-6400	
PCL Industrial Construction Co. 15915 Katy Freeway, Ste. 300 Houston, TX 77094 http://www.pcl.com	281-249-8022	
PECOFacet 118 Washington Avenue Mineral Wells, TX 76068 http://www.pecofacet.com	940-325-2575	940-325-4622
Peerless Mfg. Co. 2930 West Sam Houston Parkway, Ste. 225 Houston, TX 77043 http://www.peerlessmfg.com	281-655-7800	
Pennwell Corp. 1455 West Loop S Houston, TX 77027 http://www.pennwell.com	713-963-6276	713-963-6285
Pentair Porous Media Corp. 4301 West Davis Conroe, TX 77304 http://www.pentair.com	936-788-1000	936-788-1220
Perry Gas Processors L.P. P.O. Box 13270 Odessa, TX 79768	432-332-0100	
Petral Consulting Company P.O. Box 42586 Houston, TX 77242 http://www.petral.com/		
Petrin Corporation 1405 Commercial Drive Port Allen, TX 70767 http://www.petrincorp.com	800-256-7876	225-343-0475
Petro-Canada America Lubricants Inc. 4120 S. Juniper Ave. Broken Arrow, OK 74011 http://www.lubricants.petro-canada.ca	918-451-5655	
Petronas TBG 83 KG Kuantan Klang, Selangor 41300 http://www.petronas.com.my	60323315348	
Plant Eng. Construction Pte. Ltd. 21 Shipyard Rd. Singapore, 628144	65-6268-9788	
Praxair Inc. 175 East Park Drive Tonawanda, NY 14151	716-879-2128	

Company& Address	Phone	Fax
Precision Flow Inc. P.O. Box 7137 Odessa, TX 79760	432-381-5131	
Prime Controls, LP 815 Office Park Circle Lewisville, TX 75057 http://www.prime-controls.com	972-221-4849	
Puffer Sweiven 4230 Greenbriar Drive Stafford, TX 77477 http://www.puffersweiven.com	281-240-2000	281-274-6438
Q.B. Johnson Manufacturing, Inc. 9000 S. Sunnylane Rd. Oklahoma City, OK 73189 http://www.qbjohnson.com	405-677-6676	405-670-3270
Q2 Technologies, LLC 14720 Highway 105 West, #200 Montgomery, TX 77356 http://www.q2technologies.com	936-588-2242	936-588-2298
QuantityWare GmbH Zeiloch 1b Bruchsal, 76646 http://www.quantityware.com	49 7251 982 3003	49 7251 982 3116
Questar Energy Services P. O. Box 1129 Rock Springs, WY 82902-1129	307-352-7292	
Quorum Business Solutions, Inc. 811 Main Street, Ste. 2000 Houston, TX 77002 http://www.qbsol.com	713-430-8601	713-430-8697
R&R Engineering Co., Inc. 12585 E. 61st St. Broken Arrow, OK 74012	918-252-2571	
Randall Gas Technologies 2 Riverway, Ste. 1300 Houston, TX 77056	713-375-8266	
Ranger Plant Constructional Company, Inc. 5851 E. Interstate 20 Abilene, TX 79601 http://www.rpccinc.com	325-677-2888	
Ref-Chem, L.P. 1128 S. Grandview Ave. Odessa, TX 79761 http://www.ref-chem.com	432-332-8531	432-332-3325
Regard Resources Co., Inc 555 Aero Dr. Shreveport, LA 71107 http://www.regardresources.com	318-425-2533	318-425-1014
REM Technology, Inc. 4306 Phil Street Bellaire, TX 77401 http://www.remtechnology.com	832-314-8255	
RES Energy Solutions 2010 McAllister Rd. Houston, TX 77092 http://www.res-co.com	832-310-1801	
Rexel Inc. 8042 Katy Freeway, Ste. 100 Houston, TX 77024 http://www.rexelusa.com	713-316-1700	713-686-8906

Company& Address	Phone	Fax
Rhine Ruhr Pty Ltd Unit 1, 10-30 West Circuit, Sunshine West Melbourne, Vi 3020 http://www.rhineruhr.com.au	61 3 9300 5000	61 3 9300 5001
Rino - K&K Compression, Ltd. 3302 Lilac Street Pasadena, TX 77505 http://www.rino-kk.com	281-487-3890	281-487-7472
River City Engineering 4830 Bob Billings Parkway, Suite 100B Lawrence, KS 66049 http://www.rivercityeng.com	785-842-4783	785-842-1450
RK Turbine Consultants 330 W. Government St. Pensacola, FL 32502	850-221-6029	
Robert R. Reis, Attorney- Mediator, P.C. P. O. Box 520954 Tulsa, OK 74114	918-742-2028	918-742-2028
Rotor-Tech Inc. 10613 Stebbins Circle Houston, TX 77379 http://www.rotor-tech.com	713-984-8900	713-984-9425
Royal Filter Mfg. Co., Inc. 4327 S. 4th Chickasha, OK 73018 http://www.royalfilter.com	405-224-0229	
S&B Engineers and Constructors, Ltd. 7825 Park Place Blvd. Houston, TX 77087	713-845-7850	
S&B Infrastructure, Ltd. 100 E. 15th St., #650 Fort Worth, TX 76102 http://www.sbinfra.com	817-820-0036	
Sagebrush Pipeline Equipment 8100 New Sapulpa Rd Tulsa, OK 74131 http://www.sagepipe.com	918-551-5600	918-224-8452
SAIC Energy, Environment, and Infrastructure One West Third, Ste. 200 Tulsa, OK 74103 http://www.saic.com/EEandI	918-599-4361	
Salof Refrigeration Co., Inc. 1150 Schwab Road New Braunfels, TX 78132 http://www.salofcompanies.com	830-625-1613	830-625-0778
Samuel Engineering Inc. 8450 E. Crescent Pkwy., Ste. 2300 Greenwood Village, CO 80111 http://www.samuelengineering.com	303-714-4840	
Saulsbury Industries Inc. 2951 E. Interstate 20 Odessa, TX 79766	432-366-3686	432-368-0061
Saxon Construction, Inc. 790 Brogdon Road Suwanee, GA 30024	770-271-2174	770-271-2176
SCFM Compression Systems, Inc. 3701 S. Maybelle Ave. Tulsa, OK 74107 http://www.scfm.com	918-663-1309	918-663-6140

Company& Address	Phone	Fax
Schwob Energy Services 2349 Glenda Lane Dallas, TX 75229 http://www.schwob.com	972-243-7674	
S-Con, Inc. 8326 Hwy 21 West Bryan, TX 77807	979-822-4445	
Scott Measurement Service Inc. P.O. Box 5247 Granbury, TX 76049 http://www.scottmeasurement.com	817-573-0036	817-573-0364
SEC Energy Products & Services L.P. 9523 Fairbanks N Houston Houston, TX 77064 http://www.sec-ep.com	281-890-9977	281-955-6346
Select Engineering, Inc. 1717 S. Boulder, Suite 600 Tulsa, OK 74119 http://www.select-engineering.com	918-592-1133	918-592-1134
Sep-Pro Systems, Inc. 11050 W. Little York, Bldg. K Houston, TX 77041 http://www.sepprosystems.com	832-243-7360	
Sepra-Chem Corporation 10975 Spur 248 Tyler, TX 75707 http://www.sepra-chem.com	903-566-1015	903-566-1094
SERO Pump Systems, Inc. 3727 Greenbriar Drive, Ste. 105 Stafford, TX 77477 http://www.seropumps.com/	281-242-8080	
Setec Astronomy, Inc. P.O. Box 6557 Tyler, TX 75711		903-312-9435
Shamrock Gas Analysis 1100 South Madden St. Shamrock, TX 79097 http://www.sgalab.com	806-256-3249	806-256-3159
Sherry Laboratories 2120 W. Willow St. Scott, LA 70583		
Simms Machinery International 2357 A Street Santa Maria, CA 93455 http://simmsmachineryinternational.com	805-349-2540	805-349-9959
SME Associates LLC 6715 Theall Rd. Houston, TX 77066	281-440-7350	
SME Products, LP 6715 Theall Rd. Houston, TX 77066	281-440-7353	
Smith & Burgess 5700 Northwest Central Drive, #301 Houston, TX 77092 http://www.smithburgess.com	713-082-2647	
Smithco Engineering, Inc. 6312 S 39th West Avenue Tulsa, OK 74132 http://www.smithco-eng.com	918-446-4406	918-445-2857
SNC-Lavalin E&C 9009 West Loop South, Suite 800 Houston, TX 77096-1719 http://www.snclavalin.com	713-667-9162	713-667-9241

Company& Address	Phone	Fax
Solutia - Therminol Heat Transfer Fluids 7710-T Cherry Park Dr #126 Houston, TX 77095 http://www.therminol.com	281-750-2661	207-213-3473
Southern Flow Companies, Inc. 5291 Hanselman Victoria, TX 77905 http://www.southernflow.com	361-575-4528	361-575-9512
Southern Heat Exchanger Services 12210 A US 90 East Houston, TX 77049	281-506-0934	
Spartan Engineering Inc. 10820 E. 45th Street, Ste. 100 Tulsa, OK 74146 http://www.spartan-eng.com	918-895-7666	
Specialty Process Equipment Corporation 6400 Hawes Road Humble, TX 77396 http://www.spec-pro.com	281-812-7732	281-852-7732
SpectraSensors Inc. 4333 W. Sam Houston Houston, TX 77043 http://www.spectrasensors.com	713-300-2719	713-856-6623
Spectrum-Prime Solutions, L.P. 24 E. Greenway Plaza, Ste. 1180 Houston, TX 77046 http://www.spectrumprime.com	713-589-6852	
SPL Inc. 8880 Interchange Drive Houston, TX 77054 http://www.spl-inc.com	713-660-0901	713-660-6035
Strategic Automation Services LLC 16203 Park Row Road, Ste. 140 Houston, TX 77084	281-945-8900	
Strategy Engineering & Consulting, LLC 15995 N. Barkers Landing, Ste. 200 Houston, TX 77079 http://www.strategyeng.com	281-657-7012	
Subsurface Technology, Inc. 6925 Portwest Dr., Suite 110 Houston, TX 77024 http://www.subsurfacegroup.com	713-880-4640	713-880-3248
SulfaTreat, A Division of M-I LLC 17998 Chesterfield Airport Road, Suite 215 Chesterfield, MO 63005	800-726-7687	
Sulfur Operation Support P.O. Box 1770 Ocean Springs, MS 39566		
Sulzer Chemtech 8505 E. North Belt Drive Humble, TX 77396	281-216-8562	
Sundyne LLC 14845 West 64th Ave. Arvada, CO 80007 http://www.sundyne.com	303-425-0800	303-940-2911
Sunland Construction Inc. 315 Country Drive Delcambre, LA 70528 http://www.sunlandconstruction.com	337-685-2167	337-685-2168

Company& Address	Phone	Fax
Superheat FGH Services, Inc. 680 Industrial Park Drive Evans, GA 30809 http://www.superheatfgh.com	706-790-5353	706-790-3383
Superior Specialty Gas Services, Inc. 1102 W. 36th St. N. Tulsa, OK 74127 http://www.supspecgas.com	918-592-0081	918-592-0095
Swagelok Oklahoma 9421 E. 54th St. Tulsa, OK 74145 http://www.swagelok.com/tulsa	918-258-8661	918-258-1262
T.F. Hudgins Inc. P.O. Box 920946 Houston, TX 77292-0946	713-682-3651	
Taylor Forge Engineered Systems 308 N. Iron Street Paola, KS 66071	913-294-5331	
TEA 7580 East 151st Street Bixby, OK 74008 http://www.teaeng.com	918-394-9444	
Teague Nail and Perkins, Inc. 1100 Macon Street Fort Worth, TX 76102	817-665-7169	
Tetra Technologies Inc. 24955 I 45 North The Woodlands, TX 77380 http://www.tetratec.com	281-364-4339	
Texas Turbine, Inc. 624 Profit St Azle, TX 76020 http://www.txturbine.com	817-444-5528	817-444-3925
Texas Welders Supply 10210 I-45 North Houston, TX 77037	281-880-4392	
The Arrington Corporation P.O. Box 3128 Flint, TX 75762 http://www.arringtoncompanies.com	903-894-6157	903-894-7428
The PROS Company 601 Texas Avenue Lubbock, TX 79401 http://www.thePROSco.com	806-749-7761	806-749-7762
Thomas Petroleum Ltd. P.O. Box 1876 Victoria, TX 77902	361-573- 7662x123	
Thomas Russell Co. 7050 S Yale, Ste 210 Tulsa, OK 74136 http://www.thomasrussellco.com	918-481-5682	918-481-7427
Thurmond-McGlothlin, Inc. 1428 N. Banks Pampa, TX 79066 http://www.tm-ems.com	806-665-5700	806-665-2632
Tiger Tower Services 3012 Farrell Road Houston, TX 77073 http://www.tigertowerservices.com	281-951-2500	281-951-2520
Tomcej Engineering Inc. P.O. Box 1274 Station Main Edmonton, Al T5J 2M8 http://www.tomcej.com	780-483-0248	780-483-0248

Company& Address	Phone	Fax
Torrent Energy Services 5950 Berkshire Lane Dallas, TX 75225 http://www.torrentenergyservices.com	281-450-4000	
Total Energy Corp. 100 W. Airport Road Stillwater, OK 74075 http://www.totalenergy.com	405-253-4728	405-743-2900
Toyo Engineering Corp. 2-8-1, Akanehama Narashino-shi, Chiba, 275-0024 http://www.toyo-eng.co.jp/	81 47 451 1111	81 47 454 1800
TRC Companies, Inc. 7761 Shaffer Parkway, Ste. 100 Littleton, CO 80127 http://www.trcsolutions.com	303-395-4021	
Trimeric Corp. P.O. Box 826 Buda, TX 78610		512-295-8118
Trinity Consultants 12770 Merit Drive, Ste. 900 Dallas, TX 75251 http://www.trinityconsultants.com	972-661-8100	
Trinity Containers, LLC 2525 Stemmons Freeway Suite 520 Dallas, TX 75207-2401 http://www.trinitycontainers.com	888-558-8529	214-589-8553
Trinity Contractors 803 Old Justin Road Argyle, TX 76226	940-240-5800	
TriStar Global Energy Solutions 12600 N. Featherwood, Ste. 330 Houston, TX 77034 http://www.tristarges.com	713-463-9200	713-463-9216
TriTex Technologies Inc. 5339 Alpha Rd, Suite 215 Dallas, TX 75240 http://www.tritextech.com	972-233-2536	972-233-5160
Troy Construction Co. 8521 McHard Road Houston, TX 77053	281-437-6214	
United Shutdown Safety 629 Howard Ave., Bldg. A Deer Park, TX 77536	281-241-1740	
United Steel Structures, Inc. 1330 Enclave Parkway - Suite 400 Houston, TX 77077 http://www.ussi.com	281-496-1300	
United/Wells Inc. P. O. Box 4575 Odessa, TX 79760	915-362-2361	
Univar USA Inc. 11235 FM 529 RD. Houston, TX 77546 http://www.univarusa.com/oil.htm	214-632-4430	713-286-6965
Upstream Development and Engineering, Inc. 11767 Katy FWY, Suite 215 Houston, TX 77079 http://www.upstreamdne.com	281-752-7754	281-752-4559

Company& Address	Phone	Fax
URS 7800 E. Union Ave. Denver, CO 80237 http://www.urs.com	303-843-2000	303-843-2208
USA Environment, L.P. 10234 Lucore Street Houston, TX 77017 http://www.usaenviro.com	832-488-4088	
Valerus 919 Milam, Ste. 1000 Houston, TX 77002 http://www.VALERUS-co.com	713-744-6100	713-744-6101
Van Gas Technologies 2950 Mechanics Street Lake City, PA 16423 http://www.vangastech.com	814-774-2631	814-774-0778
Vanco Equipment Co. 7033 E. 40th Street Tulsa, OK 74145	918-627-1920	918-627-6742
Vanderpool Pipeline Engineers Inc. P.O. Box 590 Littleton, CO 80160 http://www.vpeinc.com	303-798-0275	303-484-3880
Vanson Engineering Co. 1240 N. Van Buren St., Ste. 212 Anaheim, CA 92807	714-630-3344	714-630-0384
Vapor Point, LLC P.O. Box 1239 La Porte, TX 77572 http://www.vaporpoint.net	281-867-8186	281-867-8191
Vinson Process Controls 2747 Highpoint Oaks Drive Lewisville, TX 75067 http://www.vinsonprocess.com	972-459-8200	972-459-8316
Vintrol Inc. 5325 SW 36th St. Oklahoma City, OK 73179 http://www.vintrol.com	405-261-0770	
Virtual Materials Group P.O. Box 786 Fulshear, TX 77441 http://www.virtualmaterials.com	281-346-1200	281-346-0288
Wagner Power Systems 4000 Osuna Road NE Albuquerque, NM 87109 http://www.wagnerpower.com	505-345-8411	505-344-0397
Waid Environmental 10800 Pecan Park Blvd., Ste. 300 Austin, TX 78750	512-255-9999	
Welker, Inc. 13839 West Bellfort Sugar Land, TX 77498 http://www.welkereng.com	281-491-2331	281-491-8344

Company& Address	Phone	Fax
Wellsite Compressor & Equipment Co. 3600 Bent Cedar Trail	405-282-8590	405-282-8591
Edmond, OK 73034 http://www.wellsitecompressor.com		
Western Filter Co., Inc. 10702 E. 11th Street Tulsa, OK 74128 http://www.westernfilterco.com	918-949-4455	918-949-4459
Whitlow Professional Services 22164 MCH Rd., Ste. A Mandeville, LA 70471 http://www.whitlowps.com	985-893-1100	
Willbros Group 4400 Post Oak Parkway, Ste. 1000 Houston, TX 77036 http://www.willbros.com	713-403-8000	
Wilson Midstream Services, LLC 2807 Allen Street, #343 Dallas, TX 75204	214-774-9000	
Wilson-Mohr 12610 W Airport Blvd #100 Sugar Land, TX 77478 http://www.wilsonmohr.com	281-295-8850	281-295-8870
WinSim Inc. 8653 FM 2759 Rd. Richmond, TX 77469 http://www.winsim.com	281-565-6700	281-565-7593
Wood Group Mustang, Inc. 16001 Park Ten Place Houston, TX 77077 http://www.mustangeng.com	713-215-8000	281-206-1678
Wood Group PSN 17000 Katy Frwy., Ste. 150 Houston, TX 77094	281-647-8413	281-398-1734
Worley Parsons Resources & Energy 125 West Huntington Dr. Arcadia, CA 91007	626-294-3558	
York Process Systems 5692 E. Houston St. San Antonio, TX 78220 http://www.johnsoncontrols.com	210-661-9191	210-662-6591
ZAP Engineering & Construction Services 333 S. Allison Pkwy., Ste 100 Lakewood, CO 80226 http://www.zapecs.com	303-565-5533	
Zeeco 22151 East 91st Street Broken Arrow, OK 74014	281-345-4110	
Zeochem 1600 West Hill St. Louisville, KY 40210 http://www.zeochem.com	502-634-7600	502-634-8133

Classification of Members

Services

Gas Processors Suppliers Association

6526 East 60th Street
Tulsa, Oklahoma 74145
Phone: 918-493-3872
Fax: 918-493-3875
Email: gpsa@GPAglobal.org
http://gpsa.GPAglobal.org

The following is a listing of GPSA member companies classified by the type of services that they provide to the industry.

COMPLIANCE - AUDITING

CH2M Hill

Contek Solutions LLC

EnerSsys Corporation

Geolex, Inc.

Gulf Interstate Engineering

HJ Baker, PE

Joule Processing LLC.

M&H Enterprises, Inc.

McAfee & Taft

MEI LLC

Nalco Chemical Co.

QuantityWare GmbH

Select Engineering, Inc.

Southern Flow Companies, Inc.

SPL Inc.

TRC Companies, Inc.

Trinity Consultants

COMPLIANCE - CRITICAL INCIDENT/EMERGENCY RESPONSE

Air Products and Chemicals

Conestoga-Rovers & Associates

Heath Consultants Inc.

QuantityWare GmbH

Select Engineering, Inc.

USA Environment, L.P.

COMPLIANCE - EMISSIONS TESTING

Aeros Environmental, Inc.

Anguil Environmental

Catalytic Products International, Inc.

Conestoga-Rovers & Associates

Croft Production Systems, Inc.

Federal Services LLC

FESCO, Ltd

Glv-Tech Services

Heath Consultants Inc.

SPL Inc.

TRC Companies, Inc.

COMPLIANCE - ENVIRONMENTAL SERVICES

Air Products and Chemicals

Anguil Environmental

Catalytic Combustion Corporation

Catalytic Products International, Inc.

CEI Engineering Associates

CH2M Hill

Conestoga-Rovers & Associates

Contek Solutions LLC

Edge Engineering & Science

Freese and Nichols, Inc. G2 Partners, LLC

Geolex, Inc.

Gly-Tech Services

M&H Enterprises, Inc.

McAfee & Taft

MIRATECH Corp.

MSES Corrosion Products Division

Nalco Chemical Co.

Pantechs Laboratories, Inc.

SAIC Energy, Environment, and Infrastructure

SPL Inc.

TRC Companies, Inc.

Trinity Consultants

United Steel Structures, Inc.

USA Environment, L.P.

Vapor Point, LLC

Willbros Group

Wood Group Mustang, Inc.

COMPLIANCE - LEAK DETECTION SERVICES

Air Products and Chemicals

Conestoga-Rovers & Associates

Contek Solutions LLC

EnerSsys Corporation

Geolex, Inc.

Heath Consultants Inc.

SPL Inc.

Thurmond-McGlothlin, Inc.

Trinity Consultants

Willbros Group

COMPLIANCE - LEGAL SERVICES

ENGlobal Corporation

McAfee & Taft

Robert R. Reis, Attorney-Mediator, P.C.

SPL Inc.

COMPLIANCE - SAFETY CONSULTANT

Air Products and Chemicals

Conestoga-Rovers & Associates

Contek Solutions LLC

Elkhorn Holdings Inc

Federal Services LLC

G2 Partners, LLC

Gly-Tech Services

GWD

HJ Baker, PE

M&H Enterprises, Inc.

MEI LLC

MSES Corrosion Products Division

Nalco Chemical Co.

Select Engineering, Inc.

Toyo Engineering Corp.

TRC Companies, Inc.

Willbros Group

Wood Group Mustang, Inc.

COMPLIANCE - SECURITY

Cimation

GWD

McAfee & Taft

TRC Companies, Inc.

CONSULTING - COMPUTER SYSTEMS

Analytical Instruments Corporation

Barry D. Payne & Associates, Inc.

Cimation

Conestoga-Rovers & Associates

Entero Corporation

eSimulation Inc.

Federal Services LLC

GWD

M&H Enterprises, Inc.

Modern Project Services

Moore Control Systems Inc.

Puffer Sweiven

QuantityWare GmbH

Quorum Business Solutions, Inc.

Select Engineering, Inc.

Toyo Engineering Corp.

Wilson-Mohr

Wood Group Mustang, Inc.

CONSULTING - EXPERT WITNESS

Applied Consultants, Inc.

Baker & O'Brien, Inc.

Coastal Flow Measurement, Inc.

Conestoga-Rovers & Associates

Geolex, Inc.

Gulsby Engineering Inc.

HPF Consultants, Inc.

J. H. Foglietta Consulting LLC

John M. Campbell & Company

Optimized Gas Treating, Inc.

Robert R. Reis, Attorney-Mediator, P.C.

Samuel Engineering Inc.

Select Engineering, Inc.

SPL Inc.

The Arrington Corporation

Thurmond-McGlothlin, Inc.

TRC Companies, Inc.

Trinity Consultants

 ${\bf TriTex\ Technologies\ Inc.}$

 $Vanson\ Engineering\ Co.$

CONSULTING - FORENSIC ENGINEERING

Applied Consultants, Inc.

Baker & O'Brien, Inc.

Conestoga-Rovers & Associates

 $Geolex,\,Inc.$

John M. Campbell & Company

Modern Project Services

The PROS Company

CONSULTING - CORROSION

Applied Consultants, Inc.

Conestoga-Rovers & Associates

Consulting and Field Services

Federal Services LLC

Gly-Tech Services

Gulf Coast Chemical, LLC

Gulf Interstate Engineering

GWD

International Oil & Gas Consultants Pte, Ltd.

John M. Campbell & Company

Modern Project Services

MSES Corrosion Products Division

Nalco Chemical Co. Toyo Engineering Corp.

Troy Construction Co.

Willbros Group

CONSULTING - STRATEGY PLANNING

Baker & O'Brien, Inc.

BENTEK Energy LLC

Conestoga-Rovers & Associates

Contek Solutions LLC

eSimulation Inc.

G2 Partners, LLC

Geolex, Inc.

Gulf Interstate Engineering

Gulsby Engineering Inc.

GWD

HPF Consultants, Inc.

J MAR & Associates

J. H. Foglietta Consulting LLC

John M. Campbell & Company

LKS Midstream Consulting LLC

M&H Enterprises, Inc.

MIRATECH Corp.

Modern Project Services

Nalco Chemical Co.

QuantityWare GmbH

The Arrington Corporation

TRC Companies, Inc.

TriTex Technologies Inc.

Willbros Group

DISMANTLE, SURPLUS EQUIPMENT

ARC Energy Equipment

Elkhorn Holdings Inc

Gas Technology Corporation

Gly-Tech Services

Gregory Gas Services, LLC

GWD

HETSCO, Inc.

M&H Enterprises, Inc.

Modern Project Services

Nicholas Consulting Group Inc.

Q.B. Johnson Manufacturing, Inc.

Ref-Chem, L.P.

Saxon Construction, Inc.

SCFM Compression Systems, Inc.

ENGINEERING - PROCUREMENT AND CONSTRUCTION

Air Products and Chemicals

Allied Equipment

AMCS Corporation

Applied Consultants, Inc.

Barry D. Payne & Associates, Inc.

Bowden Construction Co.

Brahma Group Inc.

Catamount Constructors

CB&I

CH2M Hill

Cimation

Conestoga-Rovers & Associates

Croft Automation LLC

Cummings Electrical, Inc.

Elkhorn Holdings Inc

EMD. Inc.

ENGlobal Corporation

EPC Inc.

EXTERRAN

Fagen Inc.

FairFax Operations, LLC

Freese and Nichols. Inc.

Gas Corporation of America

Global Process Systems SDN BHD

Gulf Interstate Engineering

Gulsby Engineering Inc.

Halker Consulting, LLC

Hunt, Guillot & Associates

J.W. Williams Inc.,a Flint Energy Services Co.

JGC Corp.

Joule Processing LLC.

KBR, Inc.

L-Con, Inc. Engineers/Constructors

Linde Process Plants, Inc.

M&H Enterprises, Inc.

Master Corp.

MEI LLC

MIRATECH Corp.

MODEC International Inc.

Modern Project Services

 ${\bf Moore\ Control\ Systems\ Inc.}$

Nicholas Consulting Group Inc.

Optimized Process Designs

Paragon Field Services

PCL Industrial Construction Co.

Petrin Corporation

Ref-Chem, L.P.

Regard Resources Co., Inc

SAIC Energy, Environment, and Infrastructure

Salof Refrigeration Co., Inc.

Samuel Engineering Inc.

Saulsbury Industries Inc.

Saxon Construction, Inc.

SCFM Compression Systems, Inc.

SEC Energy Products & Services L.P.

Select Engineering, Inc.

SNC-Lavalin E&C

Sunland Construction Inc.

Thomas Russell Co.

Toyo Engineering Corp.

TRC Companies, Inc.

Troy Construction Co.

Upstream Development and Engineering, Inc.

URS

Valerus

Vanson Engineering Co.

Whitlow Professional Services

Willbros Group

Wilson-Mohr

Wood Group Mustang, Inc.

Wood Group PSN

ENGINEERING - DRAFTING

Air Products and Chemicals

Allied Equipment

Applied Consultants, Inc.

CB&I

CEI Engineering Associates

CH2M Hill

Conestoga-Rovers & Associates

Croft Automation LLC

EMD, Inc.

ENGlobal Corporation

EPC Inc.

EXTERRAN

FairFax Operations, LLC

Freese and Nichols, Inc.

G2 Partners, LLC

Gas Technology Corporation

Gulf Interstate Engineering

Gulsby Engineering Inc.

GWD

Halker Consulting, LLC

Harris Group Inc

HPF Consultants, Inc.

Hunt, Guillot & Associates

JGC Corp.

Joule Processing LLC.

L-Con, Inc. Engineers/Constructors

Linde Process Plants, Inc.

M&H Enterprises, Inc.

Master Corp.

MEI LLC

Modern Project Services

Moore Control Systems Inc.

MSES Corrosion Products Division

Nicholas Consulting Group Inc.

Optimized Process Designs

Q.B. Johnson Manufacturing, Inc.

Ref-Chem, L.P.

Sagebrush Pipeline Equipment

SAIC Energy, Environment, and Infrastructure

Salof Refrigeration Co., Inc.

Samuel Engineering Inc.

Saulsbury Industries Inc.

SCFM Compression Systems, Inc.

SEC Energy Products & Services L.P.

Select Engineering, Inc.

Simms Machinery International

SNC-Lavalin E&C

Thomas Russell Co.

Toyo Engineering Corp.

TRC Companies, Inc.

TriTex Technologies Inc.

Upstream Development and Engineering, Inc.

URS

Vanson Engineering Co.

Welker, Inc.

Whitlow Professional Services

Willbros Group

Wood Group Mustang, Inc.

ZAP Engineering & Construction Services

ENGINEERING - PIPELINE

Air Products and Chemicals

Applied Consultants, Inc.

Bechtel

CB&I

CEI Engineering Associates

CH2M Hill

Conestoga-Rovers & Associates

Croft Automation LLC

Elkhorn Holdings Inc

EMD, Inc.

EXTERRAN

Fabreeka International

Freese and Nichols, Inc.

G2 Partners, LLC

Global Process Systems SDN BHD

Gulf Interstate Engineering

GWD

Halker Consulting, LLC

HPF Consultants, Inc.

Hunt, Guillot & Associates

JGC Corp.

Joule Processing LLC.

KBR, Inc.

M&H Enterprises, Inc.

Master Corp.

MEI LLC

Modern Project Services

MSES Corrosion Products Division

Nalco Chemical Co.

Nicholas Consulting Group Inc.

Sagebrush Pipeline Equipment

Samuel Engineering Inc.

Select Engineering, Inc.

SNC-Lavalin E&C

Toyo Engineering Corp.

TRC Companies, Inc.

TriTex Technologies Inc.

URS

Vanson Engineering Co.

Whitlow Professional Services

Willbros Group

Wood Group Mustang, Inc.

ZAP Engineering & Construction Services

ENGINEERING - PROCESS

Air Products and Chemicals

Allied Equipment

AMCS Corporation

Analytical Instruments Corporation

Applied Consultants, Inc. Atlas Copco Gas and Process

Bechtel CB&I

CEI Engineering Associates

CH2M Hill

Conestoga-Rovers & Associates

Credence Gas Services LLC

Croft Automation LLC

Detechtion Technologies

Dickson Process Systems Ltd.

EMD, Inc.

EnerSsys Corporation

ENGlobal Corporation

EPC Inc.

EXTERRAN

Fagen Inc.

FairFax Operations, LLC

Freese and Nichols, Inc.

G2 Partners, LLC

Gas Technology Corporation

GEA Refrigeration North America Inc.

Geolex, Inc.

Global Process Systems SDN BHD

Gly-Tech Services

Gulf Interstate Engineering

Gulsby Engineering Inc.

GWD

Halker Consulting, LLC

Harris Group Inc

HPF Consultants, Inc.

Hunt, Guillot & Associates

International Oil & Gas Consultants Pte, Ltd.

J. H. Foglietta Consulting LLC

JGC Corp.

Johnson Matthey Catalysts

Jonell. Inc

Joule Processing LLC.

KBR, Inc.

KW International

L-Con, Inc. Engineers/Constructors

Linde Process Plants, Inc.

LKS Midstream Consulting LLC

M Chemical Co.

M&H Enterprises, Inc.

Master Corp.

MEI LLC

Modern Project Services

MSES Corrosion Products Division

Mueller Environmental Designs

Nalco Chemical Co.

Nicholas Consulting Group Inc.

Optimized Process Designs

Ortloff Engineers, Ltd.

Prime Controls, LP

Q.B. Johnson Manufacturing, Inc.

Ref-Chem, L.P.

Regard Resources Co., Inc

Rhine Ruhr Ptv Ltd

River City Engineering

SAIC Energy, Environment, and Infrastructure

Samuel Engineering Inc.

Saulsbury Industries Inc.

SCFM Compression Systems, Inc.

Select Engineering, Inc.

SNC-Lavalin E&C

Specialty Process Equipment Corporation

The Arrington Corporation

Thomas Russell Co.

Tomcej Engineering Inc.

Toyo Engineering Corp.

TriTex Technologies Inc.

Upstream Development and Engineering, Inc.

URS

Vanson Engineering Co.

Welker, Inc.

Whitlow Professional Services

Willbros Group

WinSim Inc.

Wood Group Mustang, Inc.

Wood Group PSN

ZAP Engineering & Construction Services

Zeochem

FACILITIES, EQUIPMENT

Aeon PEC

Air Products and Chemicals

Allied Equipment

AMCS Corporation

ARC Energy Equipment

Brahma Group Inc.

Cameron Valves and Measurement

CH2M Hill

Credence Gas Services LLC

Dew Point Control LLC

Dickson Process Systems Ltd.

Elkhorn Holdings Inc

EMD, Inc.

EXTERRAN

Fabreeka International

Gas Corporation of America

Gas Equipment Company, Inc.

Gas Technology Corporation

GEA Refrigeration North America Inc.

Global Compressor, LP

Global Process Systems SDN BHD

Gregory Gas Services, LLC

Gulsby Engineering Inc.

GWD

Halker Consulting, LLC

Hammco Inc.

Harris Group Inc

HPF Consultants, Inc.

J.W. Williams Inc., a Flint Energy Services Co.

JGC Corp.

Joule Processing LLC.

KW International

Linde Process Plants, Inc.

Masters Process Equipment

Modern Project Services

Mueller Environmental Designs

Niagara Blower Heat Transfer Solutions

Nicholas Consulting Group Inc.

Optimized Process Furnaces

Peerless Mfg. Co.

Q.B. Johnson Manufacturing, Inc.

Ref-Chem, L.P.

Regard Resources Co., Inc

River City Engineering

Rotor-Tech Inc.

SAIC Energy, Environment, and Infrastructure

Salof Refrigeration Co., Inc.

Samuel Engineering Inc.

SCFM Compression Systems, Inc.

SEC Energy Products & Services L.P.

Select Engineering, Inc.

Sepra-Chem Corporation

Smithco Engineering, Inc.

SNC-Lavalin E&C

Specialty Process Equipment Corporation

SPL Inc.

Texas Turbine, Inc.

Thomas Russell Co.

Thurmond-McGlothlin, Inc.

Toyo Engineering Corp.

Upstream Development and Engineering, Inc.

URS

Valerus

Vanson Engineering Co.

Wagner Power Systems

Welker, Inc.

Willbros Group

GAS COMPRESSION - LEASING

EXTERRAN

Gas Technology Corporation

J-W Power Company

MidCon Compression LLC

MODEC International Inc.

SEC Energy Products & Services L.P.

Valerus

GAS COMPRESSION - REPAIR

Air Products and Chemicals

Brahma Group Inc.

Cameron Compression Systems

Cameron Valves and Measurement

Elkhorn Holdings Inc

Elliott Group

Gas Technology Corporation

GEA Refrigeration North America Inc.

Global Compressor, LP

J-W Power Company

L.A. Turbine

Neuman & Esser USA, Inc.

SEC Energy Products & Services L.P.

Simms Machinery International

The PROS Company

Valerus

Wagner Power Systems

Wellsite Compressor & Equipment Co.

Willbros Group

GAS COMPRESSION - SALES

A G Equipment Company

Air Products and Chemicals

Cameron Compression Systems

Cameron Valves and Measurement

Elliott Group

EXTERRAN

FES-Southwest, Inc.

Gas Technology Corporation

GEA Refrigeration North America Inc.

Global Compressor, LP

Global Process Systems SDN BHD

Guild Associates, Inc.

International Oil & Gas Consultants Pte, Ltd.

J-W Power Company

L.A. Turbine

MidCon Compression LLC

Neuman & Esser USA, Inc.

Rino - K&K Compression, Ltd.

SCFM Compression Systems, Inc.

SEC Energy Products & Services L.P.

Specialty Process Equipment Corporation

Valerus

Vanco Equipment Co.

Wellsite Compressor & Equipment Co.

York Process Systems

INSPECTIONS, TESTING, ANALYSIS - GAS CONTAMINATION TESTING

Aeros Environmental, Inc.

Analytical Instruments Corporation

Applied Consultants, Inc.

Conestoga-Rovers & Associates

Consulting and Field Services

Gas Analytical Solutions, Inc.

Intertek

Modern Project Services

Pantechs Laboratories, Inc.

PECOFacet

Scott Measurement Service Inc

SPL Inc. Willbros Group

INSPECTIONS, TESTING, ANALYSIS - GENERAL

Aeros Environmental, Inc.

Air Products and Chemicals

Analytical Instruments Corporation

Applied Consultants, Inc.

Conestoga-Rovers & Associates

Consulting and Field Services

DBR Technology Center, Div. Schlumberger

Elkhorn Holdings Inc

GEA Refrigeration North America Inc.

Geolex, Inc.

Gulf Interstate Engineering

Heath Consultants Inc.

HPF Consultants, Inc.

Hunt, Guillot & Associates

Intertek

Modern Project Services

MSES Corrosion Products Division

Nalco Chemical Co.

Pantechs Laboratories, Inc.

SCFM Compression Systems, Inc.

Scott Measurement Service Inc

Simms Machinery International

SNC-Lavalin E&C

Southern Flow Companies, Inc.

SPL Inc.

Texas Turbine, Inc.

Thurmond-McGlothlin, Inc.

URS

Willbros Group

Zeochem

INSPECTIONS, TESTING, ANALYSIS - PIPELINE

Aeros Environmental, Inc.

Air Products and Chemicals

Analytical Instruments Corporation

Applied Consultants, Inc.

CEI Engineering Associates

Conestoga-Rovers & Associates

Elkhorn Holdings Inc

FESCO, Ltd

G2 Partners, LLC

Gulf Interstate Engineering

GWD

HPF Consultants, Inc.

Hunt, Guillot & Associates

M&H Enterprises, Inc.

Modern Project Services

MSES Corrosion Products Division

Nalco Chemical Co.

Southern Flow Companies, Inc.

SPL Inc.

Troy Construction Co.

Willbros Group

OPERATION, MAINTENANCE, RELIABILITY ANALYTICAL LABORATORIES

Analytical Instruments Corporation

Diablo Analytical Inc.

EXTERRAN

FESCO, Ltd

John M. Campbell & Company

Midway Laboratory Inc.

MSES Corrosion Products Division

Nalco Chemical Co.

Pantechs Laboratories, Inc.

Scott Measurement Service Inc

Shamrock Gas Analysis

Southern Flow Companies, Inc.

SPL Inc.

Thurmond-McGlothlin, Inc.

Willbros Group

OPERATION, MAINTENANCE, RELIABILITY - FAILURE ANALYSIS

Applied Consultants, Inc.

Conestoga-Rovers & Associates

Gas Technology Corporation

John M. Campbell & Company

M&H Enterprises, Inc.

MSES Corrosion Products Division

Nalco Chemical Co.

Neuman & Esser USA, Inc.

Samuel Engineering Inc.

SCFM Compression Systems, Inc.

Simms Machinery International

SNC-Lavalin E&C

Texas Turbine, Inc.

The PROS Company

Troy Construction Co.

Whitlow Professional Services

OPERATION, MAINTENANCE, RELIABILITY - INSPECTIONS

Aeon PEC

Applied Consultants, Inc.

Conestoga-Rovers & Associates

Consulting and Field Services

Eaton Metal Products Company

GWD

HETSCO, Inc.

Hunt, Guillot & Associates

John M. Campbell & Company

KW International

L.A. Turbine

M&H Enterprises, Inc.

Modern Project Services

Nalco Chemical Co.

Neuman & Esser USA, Inc.

Paragon Field Services

Ref-Chem, L.P.

Samuel Engineering Inc.

SCFM Compression Systems, Inc.

SNC-Lavalin E&C

Troy Construction Co.

Whitlow Professional Services

Willbros Group

OPERATION, MAINTENANCE, RELIABILITY - INSULATION, PAINTING

Elkhorn Holdings Inc Gas Technology Corporation Modern Project Services Petrin Corporation Sunland Construction Inc.

OPERATION, MAINTENANCE, RELIABILITY MACHINING AND REPAIR

Air Products and Chemicals

Atlas Copco Gas and Process

Best PumpWorks

Elkhorn Holdings Inc

Elliott Group

Gas Technology Corporation

HETSCO, Inc.

KW International

Louisiana Valve Source, Inc.

Modern Project Services

Neuman & Esser USA, Inc.

SCFM Compression Systems, Inc.

Simms Machinery International

SPL Inc.

Wagner Power Systems

OPERATION, MAINTENANCE, RELIABILITY - MEASUREMENT

Analytical Systems International

Cameron Valves and Measurement

Coastal Flow Measurement, Inc.

Detechtion Technologies

Diablo Analytical Inc.

Elkhorn Holdings Inc

Fluenta Inc.

GWD

Heath Consultants Inc.

Invensys-Foxboro

Louisiana Valve Source, Inc.

Modern Project Services

Neuman & Esser USA, Inc.

Omni Flow Computers, Inc.

Sagebrush Pipeline Equipment

Samuel Engineering Inc.

SPL Inc.

Thurmond-McGlothlin, Inc.

Welker, Inc.

OPERATION, MAINTENANCE, RELIABILITY PERFORMANCE ANALYSIS

Air Products and Chemicals

AMCS Corporation

Analytical Instruments Corporation

Applied Consultants, Inc.

Baker & O'Brien, Inc.

CECA Molecular Sieves

Detechtion Technologies

EMD. Inc.

eSimulation Inc.

FairFax Operations, LLC

Gas Technology Corporation

Gly-Tech Services

GWD

John M. Campbell & Company

L.A. Turbine

M&H Enterprises, Inc.

Modern Project Services

Neuman & Esser USA, Inc.

Ortloff Engineers, Ltd.

Pantechs Laboratories, Inc.

River City Engineering

Samuel Engineering Inc.

SCFM Compression Systems, Inc.

Simms Machinery International

SNC-Lavalin E&C

Texas Turbine, Inc.

Toyo Engineering Corp.

Welker, Inc.

Whitlow Professional Services

Wood Group Mustang, Inc.

OPERATION, MAINTENANCE, RELIABILITY - SERVICES

Aeon PEC

Air Products and Chemicals

Allied Equipment

Atlas Copco Gas and Process

Baker & O'Brien, Inc.

Bechtel

Brahma Group Inc.

Cameron Compression Systems

Cameron Valves and Measurement

Catalytic Products International, Inc.

CH2M Hill

Clary E&I Services, LLC

Elkhorn Holdings Inc

Elliott Group

EMD. Inc.

eSimulation Inc.

FairFax Operations, LLC

Federal Services LLC

Gas Technology Corporation

Gly-Tech Services

Gregory Gas Services, LLC

GWD

HETSCO, Inc.

John M. Campbell & Company

M&H Enterprises, Inc.

Mid-States Supply

Modern Project Services

Mueller Environmental Designs

Nalco Chemical Co.

Neuman & Esser USA, Inc.

Paragon Field Services

SCFM Compression Systems, Inc.

Shamrock Gas Analysis

SNC-Lavalin E&C

Sunland Construction Inc.

URS

USA Environment, L.P.

Valerus

Welker, Inc.

Willbros Group

Wood Group PSN

PROCESS CONTROLS - INSTRUMENT AND ELECTRICAL CONSTRUCTION

Allied Equipment

Analytical Instruments Corporation

Analytical Systems International

Barry D. Payne & Associates, Inc.

Bechtel

Brahma Group Inc.

Buffalo Gap Instrumentation & Electrical

CB&I

Clary E&I Services, LLC

Coastal Flow Measurement, Inc.

Conestoga-Rovers & Associates

Croft Automation LLC

Cummings Electrical, Inc.

Detector Electronics Corp.

Elkhorn Holdings Inc

EMD, Inc.

EnerSsys Corporation

ENGlobal Corporation

F.W. Murphy

Fagen Inc.

Fisher Controls

Gas Technology Corporation

GEA Refrigeration North America Inc.

Genesis Systems

Global Process Systems SDN BHD

GWD

Halker Consulting, LLC

Invensys-Foxboro

JGC Corp.

Kenny Electric

LCM Industries, Inc.

Linde Process Plants, Inc.

Master Corp.

MEI LLC

Modern Project Services

Moore Control Systems Inc.

MSES Corrosion Products Division

Nicholas Consulting Group Inc.

Norriseal

Optimized Process Designs

PCL Industrial Construction Co.

Prime Controls, LP

Salof Refrigeration Co., Inc.

Samuel Engineering Inc.

SCFM Compression Systems, Inc.

Select Engineering, Inc.

SPL Inc.

Sunland Construction Inc.

Thomas Russell Co.

TriTex Technologies Inc.

Vinson Process Controls

Willbros Group

Wilson-Mohr

Wood Group Mustang, Inc.

PROCESS CONTROLS - LICENSED PROCESSES

Air Products and Chemicals

Allied Equipment

Barry D. Payne & Associates, Inc.

Bechtel

CB&I

Conestoga-Rovers & Associates

EMD, Inc.

EXTERRAN

GEA Refrigeration North America Inc.

Prime Controls, LP

Salof Refrigeration Co., Inc.

Vinson Process Controls

TECHNOLOGY - LNG PROCESSES

Air Products and Chemicals

AMCS Corporation

Atlas Copco Gas and Process

Bechtel

Cameron Valves and Measurement

CB&I

Chart Energy & Chemicals, Inc.

Elliott Group

EXTERRAN

Gas Corporation of America

Global Process Systems SDN BHD

Guild Associates, Inc.

International Oil & Gas Consultants Pte, Ltd.

J. H. Foglietta Consulting LLC

JGC Corp.

John M. Campbell & Company

KBR, Inc.

Linde Process Plants, Inc.

M&H Enterprises, Inc.

MEI LLC

Nalco Chemical Co.

Ortloff Engineers, Ltd.

Pennwell Corp.

Q.B. Johnson Manufacturing, Inc.

Salof Refrigeration Co., Inc. Simms Machinery International Toyo Engineering Corp. URS

Zeochem

TECHNOLOGY - NITROGEN REJECTION

Air Products and Chemicals

AMCS Corporation

Bechtel

CB&I

Chart Energy & Chemicals, Inc.

Elliott Group

Gas Corporation of America

Guild Associates, Inc.

Gulsby Engineering Inc.

GWD

International Oil & Gas Consultants Pte, Ltd.

J. H. Foglietta Consulting LLC

Linde Process Plants, Inc.

Ortloff Engineers, Ltd.

Pennwell Corp.

Salof Refrigeration Co., Inc.

Thomas Russell Co.

Toyo Engineering Corp.

URS

Vanson Engineering Co.

Zeochem

TECHNOLOGY - OFFGAS RECOVERY

Air Products and Chemicals

AMCS Corporation

Analytical Instruments Corporation

Anguil Environmental

Catalytic Products International, Inc.

CB&I

Dickson Process Systems Ltd.

Elliott Group

Gas Technology Corporation

GEA Refrigeration North America Inc.

Global Process Systems SDN BHD

Gly-Tech Services

Guild Associates, Inc.

Gulsby Engineering Inc.

GWD

International Oil & Gas Consultants Pte, Ltd.

J. H. Foglietta Consulting LLC

JGC Corp.

Linde Process Plants, Inc.

Ortloff Engineers, Ltd.

Pennwell Corp.

Salof Refrigeration Co., Inc.

SCFM Compression Systems, Inc.

Simms Machinery International

Specialty Process Equipment Corporation

Toyo Engineering Corp.

URS

Valerus

Zeochem

TRAINING, PUBLICATIONS - PIPELINE MAPS & DATA

BENTEK Energy LLC

G2 Partners, LLC

John M. Campbell & Company

Pennwell Corp.

Willbros Group

TRAINING, PUBLICATIONS - PROCESS

Air Products and Chemicals

CB&I

CEI Engineering Associates

Detechtion Technologies

Dickson Process Systems Ltd.

ESD Simulation Training, Inc.

eSimulation Inc.

FairFax Operations, LLC

Federal Services LLC

Glv-Tech Services

Gulf Publishing Company

J. H. Foglietta Consulting LLC

John M. Campbell & Company

Optimized Gas Treating, Inc.

Pennwell Corp.

QuantityWare GmbH

River City Engineering

TREATING - GAS

Air Products and Chemicals

Allied Equipment

Anguil Environmental

Bartlett Equipment Co.

Calgon Carbon Corporation

 $Catalytic\ Products\ International,\ Inc.$

CB&I

Credence Gas Services LLC

Croft Production Systems, Inc.

DBR Technology Center, Div. Schlumberger

Dickson Process Systems Ltd.

Evonik Corporation

EXTERRAN

Gas Corporation of America

Gas Technology Corporation

GEA Refrigeration North America Inc.

Geolex, Inc.

Global Process Systems SDN BHD

Gregory Gas Services, LLC

Guild Associates, Inc.

Gulf Coast Chemical, LLC

Gulsby Engineering Inc.

GWD

Industrial Distributors, Inc.

INEOS Oxide

International Oil & Gas Consultants Pte, Ltd.

John M. Campbell & Company

Johnson Matthey Catalysts

Joule Processing LLC.

Linde Process Plants, Inc.

M Chemical Co.

MEI LLC

Nalco Chemical Co.

Optimized Process Designs

Q.B. Johnson Manufacturing, Inc.

Q2 Technologies, LLC

SAIC Energy, Environment, and Infrastructure

Salof Refrigeration Co., Inc.

Samuel Engineering Inc.

SCFM Compression Systems, Inc.

Select Engineering, Inc.

Sepra-Chem Corporation

SNC-Lavalin E&C

Specialty Process Equipment Corporation

Thomas Russell Co.

Tomcej Engineering Inc.

Troy Construction Co.

Univar USA Inc.

URS

Valerus

Vanson Engineering Co.

Vapor Point, LLC

Welker, Inc.

Zeochem

TREATING - LIQUID

Air Products and Chemicals

Allied Equipment

Anguil Environmental

Calgon Carbon Corporation

Catalytic Products International, Inc.

CB&I

Evonik Corporation

EXTERRAN

Gas Corporation of America

Gas Technology Corporation

GEA Refrigeration North America Inc.

Global Process Systems SDN BHD

Gly-Tech Services

Gregory Gas Services, LLC

Gulf Coast Chemical, LLC

Gulsby Engineering Inc.

GWD

Industrial Distributors, Inc.

INEOS Oxide

John M. Campbell & Company

Johnson Matthey Catalysts

Joule Processing LLC.

Linde Process Plants, Inc.

M Chemical Co.

Nalco Chemical Co.

Optimized Process Designs

Pentair Porous Media Corp.

Q2 Technologies, LLC

SAIC Energy, Environment, and Infrastructure

Samuel Engineering Inc.

Select Engineering, Inc.

Sepra-Chem Corporation

SNC-Lavalin E&C

Specialty Process Equipment Corporation

Thomas Russell Co.

Tomcej Engineering Inc.

Troy Construction Co.

Univar USA Inc.

URS

Valerus

Vanson Engineering Co.

Welker, Inc.

Zeochem

Classification of Members

Supplies

Gas Processors Suppliers Association

6526 East 60th Street
Tulsa, Oklahoma 74145
Phone: 918-493-3872
Fax: 918-493-3875
Email: gpsa@GPAglobal.org
http://gpsa.GPAglobal.org

The following is a listing of GPSA member companies classified by the type of services that they provide to the industry.

ADSORBENTS, CATALYSTS, MOLESIEVES

Analytical Instruments Corporation

Anguil Environmental

Calgon Carbon Corporation

Catalytic Combustion Corporation

Catalytic Products International, Inc.

CR&I

CECA Molecular Sieves

Chemical Products Industries, Inc.

Croft Production Systems, Inc.

Evonik Corporation

EXTERRAN

Gly-Tech Services

GRACE Davison

Gregory Gas Services, LLC

Guild Associates, Inc.

Gulf Coast Chemical, LLC

Industrial Distributors, Inc.

Johnson Matthey Catalysts

M Chemical Co.

MIRATECH Corp.

Mueller Environmental Designs

Onsite Power Inc.

Q.B. Johnson Manufacturing, Inc.

Salof Refrigeration Co., Inc.

SCFM Compression Systems, Inc.

Van Gas Technologies

Western Filter Co., Inc.

Zeochem

ANALYZERS, SAMPLING SYSTEMS

Analytical Instruments Corporation

Analytical Systems International

Bechtel

Cameron Valves and Measurement

Croft Automation LLC

ENGlobal Corporation

FESCO, Ltd

Gly-Tech Services

Heath Consultants Inc.

Intertek

Michell Instruments Inc.

MIRATECH Corp.

Nalco Chemical Co.

Nextteq LLC

Sagebrush Pipeline Equipment

SpectraSensors Inc.

SPL Inc.

Thurmond-McGlothlin, Inc.

Welker, Inc.

AUTOMATION, INSTRUMENTS, PROCESS CONTROLS

Aeon PEC

Analytical Instruments Corporation

Analytical Systems International

Barry D. Payne & Associates, Inc.

Bartlett Equipment Co.

Bechtel

Buffalo Gap Instrumentation & Electrical

Catalytic Combustion Corporation

Catalytic Products International, Inc.

Cimation

Clary E&I Services, LLC

Coastal Flow Measurement, Inc.

Croft Automation LLC

Detector Electronics Corp.

Diablo Analytical Inc.

Elliott Group

EMD, Inc.

F.W. Murphy

Federal Services LLC

Genesis Systems

Global Process Systems SDN BHD

Gregory Gas Services, LLC

HPF Consultants, Inc.

Invensys-Foxboro

KW International

LCM Industries. Inc.

Lockwood International

Michell Instruments Inc.

Mid-States Supply

MIRATECH Corp.

Moore Control Systems Inc.

Nalco Chemical Co.

Nicholas Consulting Group Inc.

Norriseal

Prime Controls, LP

Puffer Sweiven

Rexel Inc.

Salof Refrigeration Co., Inc.

SEC Energy Products & Services L.P.

Select Engineering, Inc.

SPL Inc.

Texas Turbine, Inc.

Thurmond-McGlothlin, Inc.

Vinson Process Controls

Wilson-Mohr

BUILDINGS

Bechtel

Brahma Group Inc.

Croft Automation LLC

Elkhorn Holdings Inc

ENGlobal Corporation Modern Project Services

Sunland Construction Inc.

Thurmond-McGlothlin, Inc. United Steel Structures, Inc.

CHEMICALS

Air Products and Chemicals

Airgas, Inc.

Bechtel

Chemical Products Industries, Inc.

Coastal Chemical Co. LLC

Evonik Corporation

Gly-Tech Services

Gregory Gas Services, LLC

Gulf Coast Chemical, LLC

INEOS Oxide

M Chemical Co.

Nalco Chemical Co.

Q2 Technologies, LLC

Solutia - Therminol Heat Transfer Fluids

Univar USA Inc.

Van Gas Technologies

COMPLIANCE (CONTINGENCY PLANS, EMISSION CONTROLS. SAFETY EQUIPMENT)

Anguil Environmental

Applied Consultants, Inc.

Calgon Carbon Corporation

Catalytic Combustion Corporation

Catalytic Products International, Inc.

Croft Production Systems, Inc.

F.W. Murphy

Gly-Tech Services

Heath Consultants Inc.

HJ Baker, PE

MIRATECH Corp.

Nextteq LLC

Onsite Power Inc.

Peerless Mfg. Co.

Robert R. Reis, Attorney-Mediator, P.C.

Vapor Point, LLC

Western Filter Co., Inc.

COMPRESSORS (AND PARTS)

A G Equipment Company

Ariel Corporation

Atlas Copco Gas and Process

Bechtel

Cameron Compression Systems

Cameron Valves and Measurement

Elliott Group

Fabreeka International

FES-Southwest, Inc.

Gas Equipment Company, Inc.

GEA Refrigeration North America Inc.

Global Compressor, LP

Global Process Systems SDN BHD

Guild Associates, Inc.

International Oil & Gas Consultants Pte, Ltd.

J-W Power Company

L.A. Turbine

MidCon Compression LLC

Network International

Neuman & Esser USA, Inc.

Nicholas Consulting Group Inc.

Rino - K&K Compression, Ltd.

Salof Refrigeration Co., Inc.

SCFM Compression Systems, Inc.

SEC Energy Products & Services L.P.

Simms Machinery International

Specialty Process Equipment Corporation

Sundvne LLC

Texas Turbine, Inc.

The PROS Company

Valerus

Vanco Equipment Co.

Wellsite Compressor & Equipment Co.

Western Filter Co., Inc.

York Process Systems

Electric Motors (and Supplies)

Bechtel

Buffalo Gap Instrumentation & Electrical

Clary E&I Services, LLC

EMD. Inc.

Gas Equipment Company, Inc.

Mueller Environmental Designs

Network International

Rexel Inc.

Rino - K&K Compression, Ltd.

Rotor-Tech Inc.

Salof Refrigeration Co., Inc.

SEC Energy Products & Services L.P.

Wellsite Compressor & Equipment Co.

ENGINES (AND PARTS)

Air Products and Chemicals

Cameron Compression Systems

Croft Automation LLC

Cummins Inc.

Global Compressor, LP

IPD

J-W Power Company

Mueller Environmental Designs

Network International

Rino - K&K Compression, Ltd.

Valerus

Wagner Power Systems

Wellsite Compressor & Equipment Co.

Western Filter Co., Inc.

FILTERS

Aeon PEC

Bartlett Equipment Co.

Bechtel

Calgon Carbon Corporation

Coastal Chemical Co. LLC

Croft Automation LLC

Fabwell Corporation

Gas Technology Corporation

GEA Refrigeration North America Inc.

Global Compressor, LP

Gly-Tech Services

Gregory Gas Services, LLC

Industrial Distributors, Inc.

Johnson Screens

Jonell, Inc

J-W Power Company

KW International

MIRATECH Corp.

Modern Project Services

Mueller Environmental Designs

PECOFacet

Pentair Porous Media Corp.

Q.B. Johnson Manufacturing, Inc.

Rotor-Tech Inc.

Royal Filter Mfg. Co., Inc.

SCFM Compression Systems, Inc.

SEC Energy Products & Services L.P.

Sepra-Chem Corporation

Van Gas Technologies

Welker, Inc.

Western Filter Co., Inc.

FIRED EQUIP (BOILERS, FLARES, HEATERS)

Aeon PEC

Bartlett Equipment Co.

Bechtel

Catalytic Combustion Corporation

Catalytic Products International, Inc.

Croft Automation LLC

Croft Production Systems, Inc.

Gas Technology Corporation

Gly-Tech Services

Gregory Gas Services, LLC

International Oil & Gas Consultants Pte, Ltd.

KW International

Modern Project Services

Moore Control Systems Inc.

Optimized Process Furnaces

Q.B. Johnson Manufacturing, Inc.

TriTex Technologies Inc.

INDUSTRIAL AND SPECIALTY GASES

Accurate Gas Products L.L.C.

Air Products and Chemicals

Airgas, Inc.

Analytical Instruments Corporation

Gas and Supply

Superior Specialty Gas Services, Inc.

MEMBRANES

Air Products and Chemicals

Evonik Corporation

Guild Associates, Inc.

Industrial Distributors, Inc.

ODORIZATION, ODOR CONTROL

Anguil Environmental

Calgon Carbon Corporation

Catalytic Combustion Corporation

Catalytic Products International, Inc.

Heath Consultants Inc.

M Chemical Co.

Mueller Environmental Designs

Nalco Chemical Co.

Peerless Mfg. Co.

Sagebrush Pipeline Equipment

Vapor Point, LLC

Welker, Inc.

PACKAGED SYSTEMS

A G Equipment Company

Aeon PEC

Air Products and Chemicals

Allied Equipment

Analytical Instruments Corporation

Bechtel

Catalytic Combustion Corporation

Catalytic Products International, Inc.

Credence Gas Services LLC

Croft Production Systems, Inc.

Detector Electronics Corp.

Dickson Process Systems Ltd.

EPC Inc.

EXTERRAN

Federal Services LLC

FES-Southwest, Inc.

Gas Technology Corporation

GEA Refrigeration North America Inc.

Global Process Systems SDN BHD

Gly-Tech Services

Guild Associates, Inc.

Hunt, Guillot & Associates

Joule Processing LLC.

J-W Power Company

Koch-Glitsch, LP

KW International

Linde Process Plants, Inc.

Louisiana Valve Source, Inc.

MODEC International Inc.

Network International

Nicholas Consulting Group Inc.

Peerless Mfg. Co.

Pentair Porous Media Corp.

Q.B. Johnson Manufacturing, Inc.

Regard Resources Co., Inc

Sagebrush Pipeline Equipment

Salof Refrigeration Co., Inc.

SCFM Compression Systems, Inc.

Specialty Process Equipment Corporation

SPL Inc.

Texas Turbine, Inc.

Thurmond-McGlothlin, Inc.

Valerus

Wagner Power Systems

Welker, Inc.

Wellsite Compressor & Equipment Co.

Whitlow Professional Services

Wilson-Mohr

York Process Systems

PIPE, VALVES, FITTINGS, REGULATORS

Accurate Gas Products L.L.C.

Aeon PEC

Airgas, Inc.

American Steel Pipe

Analytical Instruments Corporation

ARC Energy Equipment

Bartlett Equipment Co.

Bechtel

Cameron Valves and Measurement

Chromatic Industries

Corpac Steel Products Corp.

Croft Automation LLC

F.W. Murphy

Federal Services LLC

FESCO, Ltd

Fisher Controls

Future Pipe Industries

Gas Equipment Company, Inc.

Gas Technology Corporation

Genesis Systems

Gly-Tech Services

Gregory Gas Services, LLC

Joule Processing LLC.

J-W Power Company

Kimray Inc.

KW International

LCM Industries, Inc.

Lockwood International

Louisiana Valve Source, Inc.

Mid-States Supply

Modern Project Services

Network International

Norriseal

Sagebrush Pipeline Equipment

Salof Refrigeration Co., Inc.

Scott Measurement Service Inc

SPL Inc.

Superior Specialty Gas Services, Inc.

Thurmond-McGlothlin, Inc.

Vinson Process Controls

Welker, Inc.

PIPELINE EQUIPMENT (INSTALLATION, PIGGING, REPAIR)

Air Products and Chemicals

Bechtel

Brahma Group Inc.

Coastal Chemical Co. LLC

Croft Automation LLC

Fabreeka International

Future Pipe Industries

Sagebrush Pipeline Equipment

Select Engineering, Inc.

Specialty Process Equipment Corporation

Sunland Construction Inc.

Thurmond-McGlothlin, Inc.

Wagner Power Systems

Western Filter Co., Inc.

PROCESS EQUIPMENT - AIR COOLERS

Aeon PEC

Bartlett Equipment Co.

Bechtel

Chart Energy & Chemicals, Inc.

Credence Gas Services LLC

Croft Production Systems, Inc.

EXTERRAN

Gas Technology Corporation

GEA Refrigeration North America Inc.

Gly-Tech Services

Gregory Gas Services, LLC

Hammco Inc.

Jord International

Joule Processing LLC.

J-W Power Company

Kimray Inc.

Network International

Niagara Blower Heat Transfer Solutions

Onsite Power Inc.

Ref-Chem, L.P.

Salof Refrigeration Co., Inc.

Smithco Engineering, Inc.

Toyo Engineering Corp.

PROCESS EQUIPMENT - DEHYDRATION

Aeon PEC

Air Products and Chemicals

Allied Equipment

ARC Energy Equipment

Bechtel

Croft Automation LLC

Croft Production Systems, Inc.

Dickson Process Systems Ltd.

EXTERRAN

Fabwell Corporation

Gas Corporation of America

Gas Technology Corporation

GEA Refrigeration North America Inc.

Genesis Systems

Global Process Systems SDN BHD

Gly-Tech Services

Gregory Gas Services, LLC

Guild Associates, Inc.

Gulsby Engineering Inc.

International Oil & Gas Consultants Pte, Ltd.

J.W. Williams Inc., a Flint Energy Services Co.

Johnson Screens

Joule Processing LLC.

J-W Power Company

Kimray Inc.

Koch-Glitsch, LP

KW International

Linde Process Plants, Inc.

Louisiana Valve Source, Inc.

Michell Instruments Inc.

Network International

Nicholas Consulting Group Inc.

Norwood S&S, LLC

Q.B. Johnson Manufacturing, Inc.

Ref-Chem, L.P.

Regard Resources Co., Inc

Rhine Ruhr Ptv Ltd

Rotor-Tech Inc.

Salof Refrigeration Co., Inc.

SCFM Compression Systems, Inc.

SEC Energy Products & Services L.P.

Select Engineering, Inc.

Specialty Process Equipment Corporation

Thomas Russell Co.

Toyo Engineering Corp.

Valerus

Van Gas Technologies

Welker, Inc.

PROCESS EQUIPMENT - MEASUREMENT

Analytical Instruments Corporation

Bechtel

Cameron Valves and Measurement

Chromatic Industries

Croft Automation LLC

EMD. Inc.

Federal Services LLC

FESCO, Ltd

Fluenta Inc.

GEA Refrigeration North America Inc.

Gly-Tech Services

Heath Consultants Inc.

J.W. Williams Inc., a Flint Energy Services Co.

J-W Power Company

Kimray Inc.

L.A. Turbine

Louisiana Valve Source, Inc.

Nextteq LLC

Omni Flow Computers, Inc.

Sagebrush Pipeline Equipment

Select Engineering, Inc.

Southern Flow Companies, Inc.

Specialty Process Equipment Corporation

SPL Inc.

Superior Specialty Gas Services, Inc.

Thurmond-McGlothlin, Inc.

Toyo Engineering Corp.

Welker, Inc.

Wilson-Mohr

PROCESS EQUIPMENT - TURBOEXPANDERS

Air Products and Chemicals

Atlas Copco Gas and Process

Bartlett Equipment Co.

Bechtel

Genesis Systems

International Oil & Gas Consultants Pte, Ltd.

Joule Processing LLC.

L.A. Turbine

Salof Refrigeration Co., Inc.

Simms Machinery International

Specialty Process Equipment Corporation

Texas Turbine, Inc.

Thomas Russell Co.

Toyo Engineering Corp.

PROCESS EQUIPMENT - VAPOR RECOVERY UNITS

Air Products and Chemicals

Analytical Instruments Corporation

Bechtel

Catalytic Combustion Corporation

Dew Point Control LLC

EPC Inc.

EXTERRAN

Fabwell Corporation

Gas Technology Corporation

GEA Refrigeration North America Inc.

Genesis Systems

Global Process Systems SDN BHD

Gly-Tech Services

Gregory Gas Services, LLC

Guild Associates, Inc.

J.W. Williams Inc., a Flint Energy Services Co.

Joule Processing LLC.

J-W Power Company

Kimray Inc.

KW International

Louisiana Valve Source, Inc.

Network International

Norwood S&S, LLC

Ref-Chem, L.P.

Salof Refrigeration Co., Inc.

Select Engineering, Inc.

Texas Turbine, Inc.

Toyo Engineering Corp.

Valerus

Vapor Point, LLC

Welker, Inc.

Wellsite Compressor & Equipment Co.

PROCESS EQUIPMENT - VESSELS, TANKS

Aeon PEC

ARC Energy Equipment

Bechtel

Credence Gas Services LLC

Croft Production Systems, Inc.

Dew Point Control LLC

Dickson Process Systems Ltd.

Eaton Metal Products Company

Fabwell Corporation

Fagen Inc.

Gas Technology Corporation

GEA Refrigeration North America Inc.

Genesis Systems

Global Process Systems SDN BHD

Gly-Tech Services

Gregory Gas Services, LLC

HETSCO, Inc.

Industrial Distributors, Inc.

International Oil & Gas Consultants Pte, Ltd.

J.W. Williams Inc., a Flint Energy Services Co.

Johnson Screens

Jord International

Joule Processing LLC.

Kimray Inc.

Koch-Glitsch, LP

KW International

Louisiana Valve Source, Inc.

Mueller Environmental Designs

Network International

Nicholas Consulting Group Inc.

Norwood S&S, LLC

Paragon Field Services

PECOFacet

Peerless Mfg. Co.

Pentair Porous Media Corp.

Q.B. Johnson Manufacturing, Inc.

Regard Resources Co., Inc

Rhine Ruhr Pty Ltd

Rino - K&K Compression, Ltd.

Salof Refrigeration Co., Inc.

SCFM Compression Systems, Inc.

SEC Energy Products & Services L.P.

Select Engineering, Inc.

Specialty Process Equipment Corporation

Toyo Engineering Corp.

Trinity Containers, LLC

Valerus

Welker, Inc.

Western Filter Co., Inc.

PROCESS EQUIPMENT - WASTE HEAT RECOVERY

Aeon PEC

Anguil Environmental

Atlas Copco Gas and Process

Bartlett Equipment Co.

Bechtel

Catalytic Products International, Inc.

EXTERRAN

Gas Technology Corporation

GEA Refrigeration North America Inc.

Genesis Systems

Gly-Tech Services

International Oil & Gas Consultants Pte, Ltd.

Joule Processing LLC.

Nalco Chemical Co.

Network International

Nicholas Consulting Group Inc.

Optimized Process Furnaces

Salof Refrigeration Co., Inc.

Texas Turbine, Inc.

Toyo Engineering Corp.

Process Equipment - Cryogenic

Air Products and Chemicals

Allied Equipment

ARC Energy Equipment

Atlas Copco Gas and Process

Bechtel

Chart Energy & Chemicals, Inc.

Credence Gas Services LLC

EPC Inc.

EXTERRAN

Fabwell Corporation

Gas Corporation of America

GEA Refrigeration North America Inc.

Genesis Systems

Global Process Systems SDN BHD

HETSCO, Inc.

International Oil & Gas Consultants Pte, Ltd.

Joule Processing LLC.

Koch-Glitsch, LP

L.A. Turbine

Linde Process Plants, Inc.

Norwood S&S, LLC

Q.B. Johnson Manufacturing, Inc.

Salof Refrigeration Co., Inc.

SCFM Compression Systems, Inc.

Select Engineering, Inc.

Simms Machinery International

Texas Turbine, Inc.

Thomas Russell Co.

Valerus

PROCESS EQUIPMENT - EXCHANGERS

Aeon PEC

Air Products and Chemicals

ARC Energy Equipment

Atlas Copco Gas and Process

AXH Air-Coolers

Bartlett Equipment Co.

Bechtel

Catalytic Products International, Inc.

Chart Energy & Chemicals, Inc.

Credence Gas Services LLC

Dew Point Control LLC

EXTERRAN

Federal Services LLC

FES-Southwest, Inc.

Gas Technology Corporation

GEA Refrigeration North America Inc.

Genesis Systems

Gly-Tech Services

Gregory Gas Services, LLC

HETSCO, Inc.

International Oil & Gas Consultants Pte, Ltd.

J.W. Williams Inc., a Flint Energy Services Co.

Joule Processing LLC.

L.A. Turbine

Masters Process Equipment

Network International

Nicholas Consulting Group Inc.

Peerless Mfg. Co.

Q.B. Johnson Manufacturing, Inc.

Ref-Chem, L.P.

Regard Resources Co., Inc

Salof Refrigeration Co., Inc.

Specialty Process Equipment Corporation

Toyo Engineering Corp.

York Process Systems

PROCESS EQUIPMENT - LNG

Air Products and Chemicals

ARC Energy Equipment

Atlas Copco Gas and Process

Bechtel

Credence Gas Services LLC

Elliott Group

EXTERRAN

Fabwell Corporation

Gas Corporation of America

GEA Refrigeration North America Inc.

Genesis Systems

Global Process Systems SDN BHD

Guild Associates, Inc.

International Oil & Gas Consultants Pte, Ltd.

Johnson Screens

Koch-Glitsch, LP

KW International

L.A. Turbine

Linde Process Plants, Inc.

MEI LLC

Norwood S&S, LLC

Q.B. Johnson Manufacturing, Inc.

Ref-Chem, L.P.

Salof Refrigeration Co., Inc.

Simms Machinery International

Specialty Process Equipment Corporation

Texas Turbine, Inc.

Toyo Engineering Corp.

PUMPS

Atlas Copco Gas and Process

Bartlett Equipment Co.

Bechtel

Best PumpWorks

Federal Services LLC

Gas Equipment Company, Inc.

Gas Technology Corporation

Gly-Tech Services

Gregory Gas Services, LLC

International Oil & Gas Consultants Pte, Ltd.

Joule Processing LLC.

Kimray Inc.

Network International

Puffer Sweiven

Rotor-Tech Inc.

Select Engineering, Inc.

SERO Pump Systems, Inc.

Sundyne LLC

Valerus

Vanco Equipment Co.

Wagner Power Systems

Welker, Inc.

Western Filter Co., Inc.

RECONDITIONED, SURPLUS EQUIPMENT

Aeon PEC

Air Products and Chemicals

Analytical Instruments Corporation

ARC Energy Equipment

Best PumpWorks

Cameron Valves and Measurement

Croft Automation LLC

Croft Production Systems, Inc.

Gas Corporation of America

Gas Technology Corporation

Global Process Systems SDN BHD

Gly-Tech Services

Gregory Gas Services, LLC

HPF Consultants, Inc.

Joule Processing LLC.

KW International

Louisiana Valve Source, Inc.

Network International

Regard Resources Co., Inc

Rino - K&K Compression, Ltd.

SEC Energy Products & Services L.P.

Simms Machinery International

Thurmond-McGlothlin, Inc.

Vinson Process Controls

Wellsite Compressor & Equipment Co.

SOFTWARE

Atlas Copco Gas and Process

Chemstations, Inc

Cimation

Detechtion Technologies

EMD, Inc.

ENGlobal Corporation

Joule Processing LLC.

Quorum Business Solutions, Inc.

Spectrum-Prime Solutions, L.P.

NOTES: